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Abstract

We analyze the role of industrial and non-industrial production sectors in the
US economy by adopting a novel multilevel factor model. The proposed model
is suitable for high-dimensional panels of economic time series and allows for
interdependence structures across multiple sectors. The estimation procedure
is based on a multistep least squares method which is simple and fast in its
implementation. By analyzing the shock propagation process throughout the
network of interconnections, we corroborate some of the key findings about the
role of industrial production in the US economy, quantify the importance of

propagation effects and shed new light on dynamic sectoral linkages.
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1 Introduction

In the last few decades, the world has witnessed a significant relocation of manufacturing
jobs, with production migrating across countries and resulting in the emergence of a global
supply chain structure of unprecedented size and complexity. As a result, many western
countries, like the United States (US) have seen a decline in manufacturing jobs. In the US,
the weight of industrial production (IP) sector has diminished from 25% to 18% of gross

domestic product (GDP) in the period 1977-2011. However, recent evidence from |Foerster



et al. (2011) and Andreou et al| (2019) suggests that the IP sector still plays a key role
in aggregate economic activity and GDP fluctuations in the United States. Particularly,
Andreou et al| (2019)) decompose sectoral dynamics across industrial production and non-
industrial production (non-IP) sectors into three unobservable factors, (i) a common factor
which explains variations in both IP and non-IP sectors; (ii) a group-specific factor which
is exclusive to IP sectors, and (iii) a group-specific factor which is exclusive to non-IP
sectors. The authors find that the common factor explains about 90% of the variability in
the aggregate growth index of IP sectors and that the IP group-specific factor has very little
additional explanatory power during the period 1977-2011. This means effectively that a
single common factor can be interpreted as an IP factor. So while the role of manufacturing
itself is declining, the IP sectors as a whole are still very much relevant.

Foerster et al.| (2011)) make further use of a structural factor analysis to conclude that
within the IP sector, nearly all the variability of quarterly growth rates is associated with
common factors. They note that month-to-month and quarter-to-quarter variations in
the IP index are puzzlingly large as apparently the variability across IP sectors does not
“average out”. [Foerster et al. (2011)) point out that there are competing explanations for
this puzzling observation, including (i) that IP fluctuations may be driven by common
shocks affecting IP sectors as a whole, (ii) that sector-specific shocks affecting large 1P
sectors may be responsible for high aggregate IP variability, or (iii) that input-output
linkages may help shocks to propagate across IP sectors, meaning that sector-specific shocks
will not average out.

In this paper, we revisit the role of the IP and non-IP sectors in the US economy, as well
as the linkages between the sectors. However, we approach the data using a novel dynamic
multilevel factor model which captures temporal dynamics in the time-series data. In
contrast to the previous studies, this allows us to (i) analyze sectoral shocks as uncorrelated

temporal ‘innovations’, (ii) study the dynamic propagation of these shocks across sectors,



(iii) forecast common and group-specific factors at any horizon, and (iv) analyze sectoral
linkages in a one-step-ahead predictability sense. In the empirical analysis, we have found
that propagation effects are important sources of the variability of the aggregate indices.
A key novel finding is that non-IP sectors are closely connected to both the IP and non-IP
groups once the dynamic cumulative effects are taken into account.

Factor models are popular and important tools for dimensionality reduction in large
data sets which, in economics and finance, often consist of panels of time series variables.
Specifically, each individual time series variable in the panel is modelled as a linear combi-
nation of the factors, with the factor weights referred to as loadings. The interpretations
of the factors are implicitly given by the loadings but are ambiguous for larger panels.
To facilitate the interpretation of the factors and investigate group-specific dynamic co-
movements, the factor model can be made subject to more structural dependencies. For
example, when variables are related to geographical entities (regions, countries), it can be
expected that neighboring regions may share common (dynamic) features. Similarly, when
variables are related to different industries, the time series variables may be subject to
shocks common to these industries. Such panel data structures arise naturally in many ap-
plications in economics and finance. We can relate our model to a large body of literature
on hierarchical and/or multilevel factor models, which are also referred to as block-factor
models. The block-factor models are considered by Kose et al.| (2003)), |Crucini et al. (2011)
and (Choi et al.| (2018)) for extracting international business cycles, by [Wang| (2008)) for an-
alyzing co-movements between variables in the real and financial sectors, by Diebold et al.
(2008) and Bai & Wang (2015) in their studies of international bond yields co-movements,
among many others. A different class of hierarchical dynamic factor models is explored for
macroeconomic forecasting by Moench et al.| (2013]).

Our modelling framework distinguishes itself from the existing models in two important

directions. First, we model the factors as observation-driven time-varying parameters where



the concept of observation-driven is discussed in general terms by (Cox et al. (1981). This
enables us to develop an estimation method that is straightforward in comparison to other
approaches. For example, when the factors are parameter-driven and specified as dynamic
stochastic (autoregressive) processes, more involved Bayesian estimation procedures may
need to be adopted; see, e.g. Kose et al. (2003), Diebold et al.| (2008]), Moench et al.| (2013)
and Bai & Wang| (2015). In contrast, our estimation procedure relies on basic least squares.
The interest in fast and simple estimation procedure for the multilevel factor model has
also been highlighted in Breitung & Eickmeier| (2014).

Second, our dynamic model specification allows us to obtain forecast and impulse re-
sponse functions which are formulated straightforwardly and require no additional deriva-
tions and computations. In the studies of Wang (2008), Breitung & Eickmeier| (2014]), |Choi
et al.| (2018) and Andreou et al.| (2019)), a static version of the multilevel factor model is
adopted with estimation relying on principal component analysis and canonical correlation
analysis. While the estimation procedure for their static version of the model also relies on
basic methods, it is more challenging to obtain forecasts and impulse response functions
which can clearly be a shortcoming in empirical studies.

We propose a new model formulation where the dynamic factors are driven by the
weighted linear combination of the cross-sectional data. In the spirit of |[Westerlund &
Urbain| (2015) and [Karabiyik & Westerlund| (2021)), we allow the factors to be driven by
the cross-sectional averages of the data which leads to a straightforward interpretation of
the factors. For example, when considering a two-level model, the common factor represents
the conditional (or predicted) mean of the group averages, while the group-specific factor
is the conditional mean of the group in deviations from the common factor. We establish
the stationarity and ergodicity of the limit dynamic factors and show that the filter of
the true factors is invertible. We also give conditions for the consistency and asymptotic

normality of the multistep least squares estimator. In a set of Monte Carlo experiments,



we demonstrate that the estimators behave well in finite samples and that the model is
approximating the dynamics of several data generating processes accurately.

Using the proposed model, we analyze the co-movements within and between different
US economy sectors and their interconnections. We confirm the finding of |Andreou et
al.| (2019) that industrial production is a dominant factor in the US economy, however,
we approach this question from the quarter-ahead predictive sense. We also find that
non-IP sectors are less related to the common factor than the IP sectors. However, there
is also empirical evidence of sectoral interconnectedness, especially for the sectors with
input-output relations (Long & Plosser] [1987). Our model gives us additional insight on
how economic shocks propagate and dissipate through the network of connections across
sectors and across time. Particularly, based on the dynamic impulse response analysis, we
find that there are immediate effects of shocks between IP sectors. However, cumulative
effects are more pronounced when non-IP sectors are involved. Therefore, even though the
non-IP sectors are less related to the common factor, non-IP sectors are tightly linked both
to IP and non-IP sectors. Overall, we find that shock propagation plays an important role
in explaining the variation in the aggregate indices and that the role of the propagation
effects is larger for the non-IP sectors than for the IP ones.

The outline of the paper is as follows. In Section [2] we introduce our multilevel factor
model framework and describe a multistep estimation procedure. We establish stochastic
properties of the model as well as consistency and asymptotic normality of the estimators.
Section [3] summarizes the results of the Monte Carlo experiments. In Section 4] we present
and explore the results of our empirical study for US economic activity. Section 5] concludes.
The Appendix contains the proofs of the main theoretical results. The Supplementary
Appendix (SA) contains information about the dataset, additional empirical and Monte
Carlo results, details on forecasts, impulse response functions and group connectedness

measures as well as further technical lemmas and proofs.



2 The Model

2.1 Dynamic observation-driven multilevel factors

Let y; be an N-variate random variable which is observed for time periods t = 1,...,T.
Suppose the elements of the vector y; can be categorized into S groups with N, variables
in each group, such that N = Zle N,. We let each variable be related to a common factor
and a group-specific factor. The observation-equation of our dynamic factor model is then

given by
vi =Alfi + Algi +¢ef, fort=1,....,Tands=1,...,5,

where y; = (y§,,...,y%.,) is the Ny x 1 dimensional vector corresponding to variables
in group s, f; and g; are the unobserved common and group-specific factors, respectively,
with A$ and A9 being the corresponding N, x 1 vectors of loadings, respectively, and
ej = (e};,-..,€x.,) " is the mean-zero vector of identically distributed shocks, possibly
subject to idiosyncratic serial dependence. Depending on the application at hand, the
factors f; and g; can also be interpreted as global and region-specific factors, respectively.

In matrix notation, the model can be written as
yt:Acft+Aggt+€t7 for t:17"'7T7 (]')

where y; = <y§T, LYY T>T is an N x 1 dimensional vector of cross-sectional variables
which collects all variables in all groups, g; is an S X 1 vector containing all group-specific
factors, that is g; = (gtl, e ,gtS)T, A° = (AET, e ,AgT)T is an N x 1 vector of unknown
loadings associated with the common factor f;, AY = block-diag(A{,...,A) isan N x S

block-diagonal matrix of unknown coefficients for the group-specific factors g;, and €, =



(e%T, . ,sz)T is an N-variate stationary mean-zero sequence with covariance matrix
COV(E}) = 3.

The dynamic factors are modeled as observation-driven processes. The common factor
fi takes into account between-group co-movements and is driven by all cross-sectional
variables,

s N,
ft+1=04+5(%2( Zyzt>_ >+7ft (2)

Intuitively, when 5 > 0 and |y| < 1, f; tracks the time-varying “group conditional ex-
pectation”. We filter the “group conditional expectation”, rather than the conditional
expectation of y;, to account for possibly different number of variables in each group. In
contrast, the conditional expectation of y, would easily be dominated by the groups with
large number of elements.

The group-specific factors take into account the information on the co-movements only
from the variables of the corresponding group. Naturally, these co-movements can be
common as well as group-specific. To exclude the impact of the common factor, we model
the group-specific factors as the conditional mean of y; in deviations. Thus, they are driven
by the within-group co-movements in deviations from the common factor. Therefore, we

have the following updating equation for the group-specific factors,

gf+1=as+ﬁs( Zym firy ZA >+vsgf, (3)

for s =1,...,8, with AS = (X ,,..., A\§. )" and A¢, being the exposure of variable i in
group s to the common factor f;. Hence, if S5 > 0 and |v;| < 1, ¢g; captures a time-varying
location of the group s in deviations from the common factor. Since the factors are driven

by the averages, we standardize the series beforehand. Hence, we can set a = a, = 0 for



s=1,...,5.

We focus on this formulation with one common and one group-specific factor per each
group as it is in line with our application. Besides, in the majority of applications for mul-
tilevel factor models there is evidence of the presence of only one common factor affecting
all groups; see, for example, Moench et al.| (2013)), Bai & Wang| (2015) and |Andreou et
al.| (2019). On the other hand, further factor levels can be explicitly incorporated into the
model by introducing similarly the next level updating equations for them. For instance,
variable-specific factors can be added. Furthermore, to better capture the factors’ dynam-
ics, more autoregressive terms and more lags of the mean reversion terms could be included
into the updating equations f.

The proposed model is closely related to the parameter-driven local level model as in
Durbin & Koopman| (2012) and to the score-driven models of |Creal et al.| (2013)), |Creal et
al.| (2014)) when the innovations are Gaussian. We opt for the observation-driven approach
since, in contrast to the parameter-driven models, nonlinearities in the updating equations
can be easily incorporated. For example, the filter can be made robust to the extreme values
by bounding their influence on the update. Moreover, even in the case of standard factor
model, full maximum likelihood estimation methods of large-dimensional parameter-driven
models using Kalman filter are computationally demanding as discussed, for example, in
Engle & Watson| (1981) and |[Jungbacker & Koopman! (2015). Our model formulation, as
discussed in the next section, enables us to develop fast and simple estimation procedure

based on the least squares criterion functions.

2.2 Estimation procedure

In this section, we discuss the estimation of the parameters @ = (8¢, A, 09, (A{,..., A{)T,
where the vector 8¢ = (3,v)" contains the parameters of the common factor and 69 =

(69,...,0%)7 of the group-specific factors with 89 = (B,v,)" for s=1,...,5.



In factor models, the loadings and factors are not separately identifiable. However, once
the factors are known, their loadings can be estimated. Moreover, in the multilevel factor
model, both the common and group-specific factors are unobserved and need to be esti-
mated. We propose a sequential estimation procedure. First, we estimate the parameters
0°¢ of the updating equation for the common factor f;, and filter the factor f; itself. Next,
given the common factor estimates, we obtain the loadings A¢, and estimate the residuals
of this regression. Finally, using the residuals, we estimate the parameters @9 featured in
the updating equation for the group-specific factors, filter the group-specific factors g, and
estimate their respective loadings AY. The sequential estimation of the factors is in some
sense similar to the two-step principal component estimator approach for the multilevel
factor models; see, for example, Beck et al.| (2009). Below we state in details the steps of
the estimation procedure.

Step I. Estimate the static parameters 6° of the common factor by minimizing the

following criterion function,

@9((96):%2( Z( Zy”> ftBCfl)>

where the criterion function depends on the common factor f;(6¢, fl) initialized at fl. Given
the estimate of 8¢, the common factor itself can be filtered recursively using equation ([2)).
Step II. Given the filtered common factor, estimate the vector of loadings A¢ by
minimizing the ordinary least squares loss function Qg? ) (A°). Hence,
T N\ LT
AG = (Z (ft( %,m) ) > F(65, )y,
t=2 =2
which is a standard linear regression where the loadings are coefficients and the estimated

common factor is a regressor.



The residuals from the last regression, ét =yit— A%ft, capture the effects that influence
individual series but are not common to all of them. This includes not only the individual
effects but also the group-specific ones. Hence, the residuals contain information about
the group-specific co-movements as well as about the variable-specific ones. We use the
residuals from Step I1 to estimate the group-specific factors and loadings on them. We again
do it in steps as factors and loadings are not separately identifiable without restrictions.
Steps III and IV are similar to Steps I and II in the sense that we first evaluate the group-
specific factors and then turn to the estimation of the loadings on them.

Step III. Estimate the parameters of the group-specific factors @9 using the following

least squares criterion function:

TR A 2
QO =% (F (Z sf,t) - gf(eg,gn) ,
S \i=1

where & = ((€1)T,..., (€))7 and ¢ is a filter initialization of the group-specific factors.
Given the estimated factor parameters 69, the group-specific factors can be filtered out
using updating equation ({3)).

Step IV. The loadings on the group-specific factors are estimated using again OLS by
minimizing the sum of the squared residuals ngl )(Ag ) given the estimated factors.

The sequential procedure allows us not to impose restrictions on the factors or load-
ings explicitly. Alternatively, the first two steps could be combined in one by imposing
constraint %Zle Ni S Af, = 1, and steps IIT and IV could be combined by imposing
Nis le\il Ny =1,8=1,...,5 where \]_ is the loading of variable 7 in sector s on its
group-specific factor g;. However, when the cross-sectional dimension is large the joint
estimation can be computationally demanding. Therefore, the sequential procedure is still

preferable.
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2.3 Forecasts, impulse response functions and network analysis

Besides the simple and convenient step-by-step estimation of the parameters, the model
in Section also offers immediate access to forecasts and impulse response functions
(IRFs). In particular, the simple forward-iteration of the filtering equations allows us to
produce h-step-ahead forecasts of the unobserved dynamic factors fry, and gry,, as well
as of the data yrp, for any h = 1,2,.... The IRFs can further be used to analyze the
impact of unit-specific shocks over the cross-section and over time, giving us an overview
of group interconnectedness and network structures (Diebold et al., 2008)). Section |C|in
the SA provides the details on how forecasts and impulse response functions are defined,
and how they can be obtained in practice. Additionally, it discusses different measures of
interconnectedness which can be calculated to obtain insights into the network structure

of the data.

2.4 Stochastic properties of the observation-driven filters

In this section, we analyze the properties of our model as a filter for unobserved factors.
Naturally, the observation-driven filters are initialized at some values f; € R and g; € RS
at time t = 1, take observations {y; }ien as given and update the filtered dynamic factors
according to equations and , providing us with filtered sequences { ft(O, f1)}teN and
{g:(0,81) }ten. To shorten the notation, we sometimes suppress the dependence of the
filtered sequences on the initializations fl and g; as well as on @, and denote the filtered
sequences as {ft}teN and {g; }ien-

Propositions 1 and 2 state conditions for the invertibility of the sequences { ft(O, fl)}teN
and {g:(0,81)}en as well as the stationarity, ergodicity and bounded moments of the
limit sequences {f;(0)} ez and {g;(0)}iez. Since the initial values f; and g; are almost

surely incorrect, filter invertibility plays a crucial role in ensuring that the influence of

11



the initialization vanishes suitably fast as ¢ — oo. Additionally, establishing suitable
stochastic properties for the limit sequences {f;(0)}icz and {g:(0)}icz is important for
the proof of consistency and asymptotic normality of the least squares estimators, since
the stochastic properties of the filtered sequences are directly related to the stochastic
properties of the least squares objective functions. For further discussion of the importance
of filter invertibility we refer to [Straumann & Mikosch! (2006) and |Wintenberger| (2013)).
The following assumptions state conditions on the parameter space and the properties

of the data for the filters to be invertible.

Assumption 1. ©°, ©9, ©*, and O are compact parameter spaces. © = O° x O x

O x QN C R2ASHI+N).
Assumption 2. {y,}icz is a strictly stationary and ergodic sequence.
Assumption 3. E|y;,|* <oo,i=1,...,Nyands=1,...,5.

Proposition 1. Let assumptions @ hold. The sequence {ft(O, fl)}teN initialized at f, € R
converges exponentially almost surely (e.a.s.) to a unique strictly stationary and ergodic

(SE) sequence { fi(0)}iez uniformly over the parameter space,

gug |ft(9, f1) — f(0)] 2250 ast — oo,
c

if and only if © is such that |y — | < 1 VO € ©. Moreover, the filter limit sequence satisfies

E supgee | f:(0)* < .

Proposition 2. Let the conditions of Proposition |1 hold. The sequence {§; (0, G})}ren
initialized at g € R converges e.a.s. to a unique SE sequence {g;(0)}iez uniformly on ©,
SUPgeo 1G:(0,37) — g:(0)] === 0 ast — oo, if and only if © is such that |y, — B < 1

VO € © and s =1,...,S. Additionally, the limit sequences satisfy E supgee |g;(0)]* < 0o.

12



2.5 Asymptotic properties of the estimators

In this section, we formulate conditions for the consistency and asymptotic normality of
the least squares estimators detailed in Steps I — IV. For ease of exposition, we use the
following notation for the Step I criterion function, Q%)(HC) = %Ethz ¢y, ft(OC), 0°),
where ¢ (y,, f,(6°),6°) := (% S (NL SV yfjt> - ft(eafl)>2 and superscript (1) de-
notes the step of the estimation procedure. We use a similar notation for the criterion
functions Q(TQ)(AC), A(T‘”(og), and le)(Ag).

Theorems establish the consistency of the estimators for each step of the estimation
procedure described in Section as well as the consistency of the plug-in filters ft(é%, fl)
and gt(ég, g1). To proceed with the proofs of consistency of the loadings and group-specific
factors we first establish that the common factor itself converges. The next theorem reveals

that the filter invertibility ensures both strong consistency of the estimator of the common

factor static parameters as well as the convergence of the plug-in estimator.

Theorem 1 (Consistency: Step I). Let assumptions J@ hold. Then the least squares

estimator é%( fl) is strongly consistent for 6§ for any initialization fl € R,
05.(f1) L2505 as T — .
Furthermore, a plug-in filter f,(05., f1) converges almost surely (a.s.),
1165, /1) — F1(85)] “=> 0 as ,T — oo,

where 85 € ©° is a minimizer of a limit criterion function QE,%)(@C).

The next theorem establishes consistency of the estimator of the loadings. The estimates
are obtained using OLS, hence the conditions for the consistency are overall the same as

for the regular least squares estimator. For the consistency of the least squares estimator
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we usually need to impose some assumptions on the regressors such as stationarity and
ergodicity. However, in our case, they can only hold for the limit sequence and not for the

filter itself. Moreover, the common factor is evaluated at 6% and not at 0;.

Theorem 2 (Consistency: Step II). Let assumptions ﬁ hold. Then the least squares
estimator NS is strongly consistent for AS, AS <2 AS  as T — oo, where AS € O is a

minimizer of a limit criterion function Q(O?(AC).

Theorem [3| covers the consistency of the Steps I1I and IV estimators. Finally, Theorem [4]

establishes the asymptotic normality of the stepwise least squares estimator.

Theorem 3 (Consistency: Steps IIT and IV). Let assumptions hold. Then the estimator

A

05.(g1) is strongly consistent for 63 for any initialization g, € R,
09.(81) =2 09 as T — oo,

where 63 € ©9 is a minimizer of a limit criterion function Qéi)(eg).

Furthermore, the plug-in filter gt(é:gp,gl) converges a.s., Hgt(ég,, g1) — (00| =2 0 as

t,T — co. The least squares estimator A% is strongly consistent for AY, i.e. AJ 225 AJ
as T — oo, where A} € © is a minimizer of a limit criterion function Q@(Ag).

Assumption 4. {y;}icz is near epoch dependent (NED) of size —1 on a strongly mizing

process of size —r/(r — 1) for some r > 2.
Assumption 3.a. E|ly,||*" < oo with r defined in Assumption |4}
Assumption 5. 65 € int(0°), A§ € int(0)), 8 € int(09), AJ € int(0*).

Theorem 4 (Asymptotic Normality). Let assumptions @ and ﬁ hold. Then for

every fl € R and g, € R® the four-step least squares estimator O satisfies

VT (éT - 90> 4 N(0, A"1(80)B(6:) A1 (8y)) as T — oo,

14



where B(6y) := limy_o 7Var (Zt 5 Vth(eo)) with

Ve, (00) = (V5LadV(0,). VT .a?(0,). V] ¢ (0,), VT 9, and
04:(60) : 00t (00); Vieeact: (00); Vaaq;™ (00), (A%,‘,Ag)% (6o) an

Aq(6y) 0 0 0
AQl (00) A2<00) 0 0

As31(0)) As(6y) As(6o) 0

Au(8y) Au(8y) Au(8y) Ai(6)))

As expected the asymptotic variance of the Step I estimator has a standard form, while
the variance of the Step II estimator is affected by the previous estimation step, the variance
of the Step III estimator is affected by the two previous steps, and so on. This is implied
by a lower triangular structure of matrix A(@). The exact expressions for the elements of
the matrices A(0) and B(6) are provided in SA Section

As noted earlier the common factor captures the “group conditional expectation” of the
data, while the group-specific factors describe the conditional means of y;, in deviations
from the common factor. From the observation equation we notice, however, that
%ZleN%Zz WYie = fi + 5258:1 g; + €, where &, = st 1 N ZZ 1Eite Hence, the
forecast for the “group conditional expectation” is based on the common factor as well as
on the averages of the group-specific factors. Intuitively, this means that if in the current
period many groups experience downturn then in the next period we expect the downturn
in the common factor as well. From the perspective of “factors disentangling”, this means
that the group-specific factors can introduce a ‘bias’ on the filtered common factor. The
following remark highlights however that this bias vanishes for large .S, or when the group

factors represent a martingale difference sequence.

Remark. Let either (i) E [% Zf:l Gi|\Fi—1| = 0; or (i1) {g; }rez is a martingale difference

sequence for all s =1,...,S; or (iii) S — oco. Then, ft 1s an unbiased filter of the common

15



factor f,, i.c. E[ ft(eg)]}},l] - E[ ft(eg)]}“t,l].

3 Monte Carlo study

To investigate the performance of the proposed estimation procedure for the multilevel
factor model, we perform a series of Monte Carlo experiments. The primary data generating

process (DGP) under consideration is:

v = A°f, + A9, + &, & "% N0,%), t=1,...,T, (4)
foir = 6 fi+ €1, & "= 0.5N(0,1),
G =V 8+ M, ne "% 0.5N (04, Tg).

We use the following parameter values in the simulations: x = 0.9, ~ U(]0.75,0.9]),
5\;8 ~ U([0,1]) and S\f’s ~ U([0,1]) for s = 1,...,S. Furthermore, to interpret the factors
as conditional means, we normalize the loadings such that %Zle Ni S 5‘25 =1 and

N% Zjvil 5\?,5 — 1 for each group s where AY := (5{8, . ,5\?\,575).

The aim of this study is to investigate the finite sample properties of the static and time-
varying parameters as well as the fit of the data. The number of Monte Carlo simulations
is set to 1000. In the primary setup, we put Ny, = 10,5 = 10 and 7" = 300. For each
simulation, we generate observations for 500 time periods and discard those for the first
200 time periods to reduce the influence of the starting point. In some experiments we

additionally consider other DGPs, different sample sizes T" and different numbers of groups

S. When this is the case, it is explicitly stated in the text.
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3.1 Static parameters

First, we analyze the finite sample properties of the static parameter estimates. This
includes the factor parameters in 8¢ and 69 in model equations and as well as
the loadings A¢ and AY in model equation ((1)). We consider three different sample sizes
T = {300,600, 1200}. The kernel density plots of the estimated parameters for different
sample sizes are presented in Figure [I] Since we simulate data from the parameter-driven
model and we estimate the parameters from the observation-driven model discussed in
Section [2] all the parameters are reparameterized. Therefore, to obtain the reparameterized
values we simulate large time series of length 7" = 1,000, 000 for y; and then estimate the
model — using the estimation procedure discussed in Section . We then check that
for this length of the time series the estimates are invariant to the seed used in the simulation
and do not change with an increase in the sample size. The results in Figure (1| confirm
that the estimated parameters are concentrated around the reparameterized parameters

and collapse towards them as the sample size increases.

2 14 6 18 03 04 05 06 07 08 09 10 06 07 08 09 10 11 12 13 14 02 04 06 08
c c g g
Al,l AS,Z /\1,1 AS,Z

Figure 1: Kernel density plots of the estimated parameters. The results are based on
1000 Monte Carlo simulations for 3 sample sizes and with S = 10 and N4=10. Since the dimension of the
parameter vector is large, not all results are shown, but the results for other parameters are similar. The
vertical red line indicates the reparameterized value of the parameter obtained using the large sample.

3.2 Filtering

Next, we analyze how well our model and estimation procedure can forecast the group
conditional mean, which is NL sz\il A s fi+ g;. For this purpose, we consider the DGP as

stated above as well as a range of other patterns for the common and group-specific factors.
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The patterns for the factors are summarized in Table in the SA. The patterns include
smooth dynamics such as an AR(1) process or a sine curve, but also abrupt changes such
as breaks and ramps.

We simulate time series of size T' = 300 and estimate observation-driven model presented
in Section [2| In Figure 2] we demonstrate that our model captures well the dynamics of the
group conditional mean given different dynamic specifications for f; and g;. In most cases,
the true value of the group mean (red dashed line) is within the 95% confidence bounds.
Hence, the model as able to adapt to an abrupt single break but also to changes caused by
multiple breaks. The additional results of the filtering of the common and group-specific

factors are presented in SA Section [E]
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Figure 2: One-step ahead forecast of the group 1 conditional mean. The results
are based on 1000 Monte Carlo simulations for different patterns for f; and g; presented in Table
Red dashed line denotes the true value of the group mean, solid black line represents the median value of
the group mean computed over 1000 simulations and the gray shaded area indicates the 95% confidence
bounds. For illustrative purposes, in some cases we also present the dynamics of the group-specific factor
using the black dotted line to highlight the influence of the break, steps, or ramp.
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3.3 Out-of-sample forecast performance

Finally, we evaluate out-of-sample forecast performance of the proposed model. We again
use the primary DGP to simulate the data. We conduct one, two, and three-step-ahead
out-of-sample forecasts M = 50 times using a rolling-window of size T'. In particular, we
simulate time series of size T+ M, estimate parameters using yy, ..., Y74, then produce
one, two, or three-step ahead forecasts for each of the series and repeat this procedure
M = 50 times. In these experiments, we consider a small sample size T"= 100 as well as a
large sample size T' = 300.

For each of the forecasts we compute an N x 1 vector of mean squared errors, MSE =
+ fozl(yTﬂn — ¥7+m)?, and of mean absolute errors, MAE = - Zn]\le YT tm — Y74ml,
where yr.,, is either one, two, or three-step-ahead forecast. We compare results of our
model to the results of the static factor model with one, two and three factors included which
we indicate as PC1, PC2 and PC3, respectively. The static factor models are estimated
using a two-step estimation procedure and the forecasts for them are produced iteratively.
In Table[I} we present the average of the MSE and MAE ratios where the average is taken
across the simulations and cross-sections. We find that according to both MSE and MAE
ratios our model outperforms all static factor model specifications for one- and two-step-
ahead forecasts and it performs equally well as the static factor models in the case of the

three-step-ahead forecasts.

4 IP and Non-IP sectors in US Economic Activity

Our empirical study investigates the importance of Industrial Production (IP) and non-IP
sectors in US economic activity as well as the linkages between the two sectors. IP and non-
IP sectors constitute the Gross Domestic Product (GDP) index which is the most important

measure of economic activity. Since many sectors are interconnected, they can be subject
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Obs-driv/PC1 ~ PC2/PC1 PC3/PC1
MSE MAE MSE MAE MSE MAE

h=1 0.83 0.732 0978 0.951 0.961 0.915
T=100 h=2 0937 0871 0985 0.966 0.973 0.941
h=3 0980 0.959 0.990 0.977 0.981 0.959
h=1 0880 0.758 0.978 0.950 0.959 0.911
T=300 h=2 0949 0.893 0.985 0.965 0.972 0.939
h=3 0993 0982 0.989 0975 0.981 0.957

Table 1: Average out-of-sample MSE and MAE ratios for the observation driven,
PC2, and PC3 models relative to the PC1 model. The averages are taken across the
simulations and cross-section. PCk denotes a factor model with k factors, h is the forecast horizon and T’
the rolling window size.

to shock spillovers as well as to common economic shocks. These shocks can potentially
explain the large variability of the aggregate IP index that was documented by |[Foerster et
al| (2011). We adopt our proposed multilevel factor model to analyze the co-movements

within and between different US industries as well as their interconnectedness.

4.1 Data description

The dataset consists of quarterly standardized growth rates between 1977Q1 and 2011Q4
of IP and non-IP sectors in the US. In particular, we have the growth rates of 87 IP sectors
and 42 non-IP sectors. The IP data is provided by the Board of Governors of the Federal
Reserve System (FED) and the seasonally adjusted quarterly time series data for each of
the sectors is retrieved from the FRED databasd'] The IP data is disaggregated up to the
four-digit level in the North American Industry Classification System (NAICS) for the year
2002. The non-IP data is provided by |Andreou et al.| (2019).

We aim to identify both common and group-specific factors. To accommodate the
within-group co-movements, we distribute sectors into groups. The groups are defined
according to the NAICS and correspond to the two and three-digit aggregation levels of

the year 2002 for the non-IP and IP sectors, respectively. In this way, we obtain 24 groups

thttps:/ /fred.stlouisfed.org
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for the IP data and 11 groups for the non-IP data; see the SA for more information.

For the period under consideration, the variables are published at different time fre-
quencies. The IP sector data is released on a monthly basis, while non-IP sector data is
published on an annual basis. We follow Andreou et al.| (2019)) by considering yearly non-I1P
sector data and quarterly IP sector data. Hence, we have 35 years of observations for the
low-frequency (non-IP) variables and 140 quarters of observations for the high-frequency
(IP) variables. To obtain a fully quarterly dataset, we disaggregate the annual (non-IP)
data into quarterly series using a mix of the |Al-Osh| (1989) and Silva & Cardoso| (2001)

methods; see the SA for more information.

4.2 Common factor estimates

Figure presents the observed data and the filtered common factor. This estimated
factor appears to correctly capture the “group conditional expectation” of the data and
the variation in this factor is closely related to the economic cycles. In particular, strong
downturns of the common factor are well aligned with the US recessions. Specifically, large
falls are evident during the early 1980s recession, early 1990s recession, September 9/11
attacks, and perhaps most profoundly, during the great recession. Therefore, we conclude
that the common factor indeed summarizes the aggregate shocks in the economy accurately.

We also provide a comparison with the common factor reported in |Andreou et al.
(2019) and which is similar to our filtered dynamic common factor (Figure [3b). Both
factor estimates are based on a similar dataset and group-factor model. However, the
estimates of Andreou et al. (2019) are based on principal components (using all data)
while our estimates are coming from an observation-driven ‘“real-time” filter (only using
past data). Overall, we find that the correlation between the two sets of factor estimates
is high (approximately, 72% contemporaneous and 90% with one lag/forward).

Furthermore, we measure the importance of the common factor to the sectors by the
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(a) Non-IP and IP time series (grey lines) (b) The common factor from our model and
and the filtered common factor (black line). the one from |Andreou et al.| (2019).

Figure 3: The estimated common factor. Light purple shaded areas correspond to the recession
periods as established by the National Bureau of Economic Research (https://www.nber.org/cycles
.html). In panel (b), the estimated common factor from our model is standardized to facilitate comparison
with |Andreou et al.| (2019).

coefficient of determination R? from the regressions of the sectoral growth rates on our
filtered common factor. In Table [2| we present the rankings based on this R? for the IP
and non-IP sectors. We find that the R? for the IP sectors is higher than for the non-IP
sectors. Hence, the common factor explains more variability in the IP sectors data. This is
in line with the findings in |Andreou et al. (2019) where the authors find that the common
factor is more related to IP data. We also find that among the non-IP sectors the common
factor plays the most important role in explaining the variability of the Administration and
support services, Construction, and Wholesale trade sectors. Among the top ten ranked IP
sectors, most of them belong to the Fabricated metal products (FMP), Furniture (Furnit),
and Machinery (Mach) groups.

Overall, We find that the fit (R?) is low for many sectors when regressed only on the
common factor; hence, a few sectors contain all information about the dynamics of the
common factor. Interestingly, the sectors for which the common factor provides a good fit
do not necessarily have the largest weight in the IP or GDP indices.

The close similarity of our results compared to those obtained by |Andreou et al.| (2019)
is interesting since we use (partially) different datasets, different models, different methods

for factor estimation, and also different ways of treating mixed frequencies and of defining
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IP sectors Group  R%(%) | non-IP sectors Group  R2%(%)

Com. and serv. ind. machin. &  Mach 53.263 | Administr. and support servic. PBS 44.475
other gen. purpose machin.

Forging and stamping FMP 46.361 | Construction Constr  41.145
Metalworking machinery Mach  45.712 | Wholesale trade WT 34.627
Coating, engraving, heat treating FMP 43.953 | Accommodation AER 32.936
Other fabricated metal prod. FMP 43.234 | Miscel. prof., scientif.&tech. servic. PBS 27.82
Machine shops, turned product FMP 41.67 Other transport.&support activ. T™W 26.563
Architectural and structur. metals FMP 39.7 Gov. enterprises (Federal) Gov 25.241
Household and instit. furniture Furnit  37.982 | Retail trade RT 24.125
Other miscell. manufact. Miscel  33.817 | Rail transportation T™W 22.767
Office and other furniture Furnit  33.767 | Warehousing and storage T™W 22.475

Table 2: Regression results of the sectoral growth rates on the common factor.
We demonstrate the top ten ranked IP and non-IP sectors together with the group name according to

the R? of the regression of the sectoral growth rates on the estimated common factor. The group name
abbreviations are outlined in Tables and in the SA.

sector groups E| However, in contrast, our model and methods can provide forecasts and

impulse response functions.

4.3 Granularity and network analysis

Next, we examine group interconnectedness in terms of the shock spillovers. Given that
our results are coming from a dynamic model, we can examine the contribution of the
contemporaneous shocks as well as of the propagation effects on the industrial production
aggregate index. Furthermore, we study how these shocks propagate and dissipate through
the network of connections by means of the network representation based on impulse re-
sponse functions (IRFSs).

A high IP index variability may arise because of (i) common contemporaneous shocks
affecting all the sectors, (ii) large sectors having large non-averaging out effects, and (iii)
propagation of the shocks; see Foerster et al.| (2011)). The covariance terms of the sectoral
growth rates contain information on these three effects while the ‘uncorrelated’ innova-
tions summarize the contemporaneous effects (i) and (ii) excluding the propagation effects.

Therefore, for making an effort to explain the large variability in the IP index, we pro-

2We did a robustness check where we split the data into 2 groups as in |Andreou et al| (2019). The
results are rather similar and are available upon request.
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vide an insight into the importance of contemporaneous common shocks by analyzing the
covariance matrix of the residuals. In particular, we compare the standard deviations of
the aggregate indexes by taking account of the covariances and by not taking account of
these (Table . Moreover, to quantify the importance of the propagation effects, we con-
sider both the aggregated indexes computed as the weighted averages of the sectoral (IP or
non-IP) growth rates as well as the weighted average of the residuals. The results of this
analysis show that both the contemporaneous shocks and propagation effects are impor-
tant sources of the IP index variation, together accounting for approximately 65% of the
variation. While propagation is less important, it still accounts for a non-negligible part of
the variation (around 24%). The aggregate non-IP index has substantially less variability
while it has contemporaneous and propagation effects jointly accounting for 50% of the
total variability and propagation effects accounting for around 32%. We may conclude

that the effects of the contemporaneous shocks are stronger for IP than for non-IP sectors.

I. “Uncorrelated innovations’”  II. Sectoral growth rates

IP sectors non-IP sectors IP sectors mnon-IP sectors

With sectoral covariation 4.25 0.26 5.58 0.38
Without sectoral covariation 1.77 0.14 1.97 0.19

Table 3: Standard deviations with and without the sectoral covariance terms.
Similar to |[Foerster et al.| (2011)), the entries of the rows labeled ‘with sectoral covariation’ are the sample
standard deviations of Zf;l wi7tuft (I), where uff denote ‘uncorrelated’ innovations adjusted for the origi-

nal standard deviations of the sectoral growth rates, and Zil wi,tyft (IT), where yft are non-standardized
sectoral growth rates. Superscript G = {IP,non-IP} highlights that the sum is taken over the series that
either belong to IP or non-IP group. The rows labeled ‘without sectoral covariance’ refer to the standard
deviation computed without taking into account the sectoral covariance terms. As a robustness check we
also considered equal weights, the results are similar and not included.

To analyze the importance of the large sectors in explaining large variability of the
aggregate indices, in Figure [l we report the top ten sectors with the largest standard
deviation of the destandardized ‘uncorrelated’ innovations, namely potentially influential

shock-transmitters. These results demonstrate that among the large shock transmitters

only 2-3 of them have a large weight in the aggregate index which indicates that the large
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sectors are unlikely to be the dominant source of the large variations in the aggregate 1P

index.
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Figure 4: Sectors with the largest standard deviations of the residuals. The figure
presents the top ten IP sectors with the largest standard deviation of the destandardized ‘uncorrelated’
innovations. The blue cells correspond to the sectors that are also in the top ten according to the weight

of the aggregate industrial production index in year 1997Q1 and 2011Q4.

Moreover, given that our model is dynamic, it allows tracking shocks propagation

through the networks of connections using the approach of Diebold & Yilmaz (2014). How-

ever, we adapt this approach to account for group rather than sector interconnectedness by

considering the averages of the generalized impulse responses of Koop et al,| (1996) within

each group. Moreover, we examine how the shocks propagate and accumulate through
the network by focusing on the cumulative impulse responses with different time periods
after the shock occurrence. The networks summarize information on the effect of the shock
from one group to another with the strength of the connection being determined by the
strength of the (cumulative) responses. To quantify this effect we look at the (average)
group impulse responses due to the shock in one of the groups. Specifically, by considering
the shocks to one group (all the sectors within the group) we quantify the responses of
all other groups. This provides us with the pairwise connectedness measures between the
shock-transmitter group and all other groups. We assume that the size of the shock in

the group-transmitter is proportional to the number of the sectors in the group as well as
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to the size of the residuals of the series within this group. Then we repeat the analysis
by considering another group as a shock-transmitter and quantifying the responses of all
other groups. The network adjacency matrix is obtained once all the groups have been

considered as potential shock transmitters.
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Figure 5: Networks based on the group pairwise directional connectedness for
different periods after the shock. The nodes correspond to the different groups of economic
activity. The color of the node indicates whether the group is IP (blue) or non-IP (yellow). The size
of the node is based on the (rescaled) degree centrality. The group name abbreviations are explained in
Tables [A.T and [A-2]in the SA. The nodes with weak connections, are not shown in the plot.

The networks based on the cumulative group average impulse responses are presented
in Figure o, We consider different horizons after the shock occurrence: contemporaneous
response (h = 0), 1 quarter (h = 1) and one year (h = 4) after the shock. For illustrative
purposes, we only present the pairs that have the strongest connection (defined as the 95th
percentile of all average pairwise connections, in absolute terms). The networks reveal
several interesting results. First, at h = 0 there are many links between IP groups, a
few from non-IP to IP groups and between non-IP groups, and no links from IP to non-
IP groups. Furthermore, we find that the edges between the non-IP groups at h = 0
are preserved at h = 4, although many new edges between non-IP groups appear as the
horizon increases. In contrast, the number of links between IP groups decreases as the

horizon h increases, while the number of links between IP and non-IP groups substantially

increases. Therefore, we observe immediate effects of the shocks between IP groups which
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can potentially be explained by the presence of the input-output relations between the
sectors. The cumulative effects are more pronounced between IP and non-IP sectors and
between non-IP sectors. The latter indicates that when non-IP groups are involved it takes
time for the shocks to accumulate. It confirms our earlier finding that the role of the
propagation effects is larger for non-IP than for IP sectors. Further, the results show that
one year after the shock (h = 4) the “hub” groups become more evident. In particular,

Construction (Constr) and Wholesale trade (WT) are involved in most of the edges which

implies that these groups have larger cumulative effects on the others.
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Figure 6: Ranking based on the absolute value of the in- and out-degree central-

ity measures at h = 0 and h = 4. Details on the centrality measures can be found in the SA
The group name abbreviations are explained in Tables and in the SA.

27



As the network representation only shows the strongest connections, in Figure [0] we
present a ranking based on the in- and out-degree centrality measures for the different
periods after the shock occurrence. This allows us to identify the most central groups
based on how the node responds to the shock in other groups (the in-degree centrality)
and how other groups respond to the shock in the node (the out-degree centrality). For
the bottom ten ranked groups, we find that at h = 0 and h = 4 the composition remains
almost unchanged according to both in- and out-degree centrality. Hence, several groups are
constantly isolated in the network since they do not strongly respond to the shocks in other
groups and do not transmit shocks to the neighbors much. For the top ten ranked groups
based on the out-degree centrality, the composition remains almost unchanged when the
horizon increases. Consequently, there are few groups that transmit pronouncedly shocks
to others and the effect accumulates over time. Among the top ten ranked groups based
on the in-degree centrality the number of non-IP groups increases substantially when the
horizon increases. Hence, while the effect on the IP groups is immediate, for the shocks to
non-IP groups it takes time to accumulate. We again find that Construction, Retail and
Wholesale trade sectors are the most central according to both in- and out-degree centrality
measures. Among the IP groups, Plastics, Furniture and Printing groups have large in-
and out-degree centrality measures both at h = 0 and h = 4. In Figure [j] it is shown that
these groups are tightly linked (in both directions) to Construction, Wholesale and Retail
trade groups which transmit large shocks, leading to high in-degree centrality but also high

out-degree centrality.

5 Conclusion

We have introduced a new parsimonious multilevel factor model with observation-driven

factor dynamics. The model accounts for different types of factors such as common and

28



group-specific factors, which can be relevant in many applications. The method is easy to
apply in practice since our proposed estimation procedure is simple and fast. Moreover, the
dynamic model generates forecasts and impulse response functions in a standard fashion.
This dynamic feature can provide insight on how economic shocks propagate and dissipate
through the network of connections across groups/sectors and across time. We further
have established theoretical stochastic properties of the filters and asymptotic properties
of the estimators. In Monte Carlo experiments, we have established that our estimators
behave well in finite samples. In the empirical study, we have studied the role of the 1P
and non-IP industries in the US economy. The results confirm the importance of the IP
sectors in explaining the variability of aggregate shocks. A key novel finding is that the
non-IP groups/sectors are more tightly linked to both the IP and non-IP groups when
the cumulative effects over time are accounted for. Our proposed dynamic factor model is
able to measure these propagation effects in an effective way and without relying on heavy

computational methods.
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Appendix

This appendix contains the proofs of the theorems stated in Section Other theoretical

details can be found in the SA Section [Dl We adopt the common notation for the norms.
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Particularly, we use a Euclidean norm for vectors, that is for any vector x, ||x|| = Vx'x,
and a Frobenius norm for matrices, that is for any matrix A, [|A|| = \/trace(A’A).

The vector 8 collects all the unknown parameters. To shorten further notation, we
introduce 0 := (0(1)T,0(2)T,0(3)T,0(4)T)T where superscript ¢ corresponds to the step of

the estimation procedure. For example, 81 = 6°.

Proof of Theorem[1: The existence and measurability of the estimator é(Tl ) follow straight-
forwardly from Theorem 2.11 in |White| (1996) since the criterion function is continuous on
all arguments and the parameter space ©° is compact.

To prove consistency it is sufficient to verify the uniform convergence of the criterion
function to the limit criterion function and the identifiable uniqueness of the minimizer 0(()1)
of the limit criterion function (White, 1996, Theorem 3.4). For notational convenience, we
define QX (8W) := E [¢ (y1, £:(01),00)], QF(0W) == L371, qW (v1, £i(01), 00),
and Qg})(O(l)) = %23:2 g (yt,ft(e(l), fl),0(1)>. To show the uniform convergence of
the criterion function we proceed in a similar manner as in Blasques et al.| (2022). By the

triangle inequality we have

0"(8) — Q1 (0)] + sup
6cO°

sup |Q1V(8) — QL(O)| < sup Pe)-v®)|. ©)

0cOc° 0cO®c

The strong uniform convergence of the second term in (|5 follows by Lemma [TA]l} For the

first term on the right hand side, by the triangle inequality we have

AP 0) - Q(6)] < 73 sup [(6ly) — £:0)) ~ (6(32) — F(6))"

sup
0co° — oco°
1 & 9 L
L P20\ £2 - 2 B
< T ;2: esgu(gc |f7(0) — f7(0)] + T tEQ |p(ye)| OSGU(EC |f:(8) — £(0)], (6)

£1(0) — £,(8)] <22 0 as

where ¢(y;) == § Zil NL S Y;;- By Proposition |I| supgcge

t — oo and Esupg.g |f1(0)]* < oo. Hence, by Lemma 2.1 in [Straumann & Mikosch! (2006))
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and Corollary TA.15 in Blasques et al.| (2022)), the expression @ converges to 0 a.s. since
sequence {|¢(y¢)|}iez is SE (implied by Assumption [2) with Elog™ |¢(y;)| < oo (implied
by Assumption . Hence, the uniform convergence of the criterion function in holds.
Now we turn to the identifiable uniqueness of 9(()1) € ©. For a nonlinear least squares
criterion function the minimum is achieved at the conditional mean. Therefore, the unique-
ness condition is that f,(™)) # ft(Oél)) for all @) £ 0(()1) on a set of non-zero probability
(Newey & McFadden! (1994)). To prove uniqueness we proceed by contradiction. We as-
sume that there is 1) # 0(()1) such that ft(O((]l)) = £,(6M)) on a set of non-zero probability.

This implies that for every t,

(8= Bo)d(ys) = (Yo — Bo — (v — B)) £(65). (7)

We notice that the left hand side in @ is F; measurable, while the right hand side is F;_
measurable. For this equality to hold we should have f = Sy and v = =, which leads
to the contradiction. Given the uniqueness of 081), identifiable uniqueness immediately
follows from the continuity of the limit criterion function and compactness of the set ©;
see [Potscher & Pruchal (1997). Hence, é;” S 0(()1) as T — oo. The convergence of the

plug-in estimator follows by Lemma thus completing the proof. [ |

Proof of Theorem[J: We denote the critetion function evaluated at the filtered time-varying
parameter as Qg)( 2,00 =1 LS~ gl (yt, JAC)) 0(2)>, the criterion function evalu-
ated at the limit time-varying parameter as Qg?)(O(Q), o) = % 23:2 q? (yt, f:(6W), 0(2)) ,
and the limit criterion function as QQ(GQ), 6W) =K [ Ny, f:(6M),0 )], where super-
script (2) refers to the step of the estimation procedure.

The existence and measurability of the estimator ég ) follows from Theorem 2.15 for two-
stage estimators in \White, (1996)) since ©*¢ is compact and criterion function is continuous.

We highlight that the criterion function Q(TQ)(W),ég} )) depends on the filtered time-
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varying parameter that was initialized at some value f1 at time t = 1 and evaluated at the

first stage parameter estimate é(Tl ), By the triangle inequality

o 197 (008) 2 (00) < g 07 0.07) - 05 (0.0
+ sup |QP (e,é;”) QW (e,eg”)‘. ®)

6cOX e

The first term in the expression above goes to zero almost surely by the same argument as
in the proof of Theorem [1| since the filter is uniformly invertible. The uniform convergence
of the criterion function then follows since the second term in converges to zero almost
surely by Lemma

Identifiable uniqueness condition is satisfied, since A°f;(6§) is a conditional mean and
ACf,(05) # Acf,(65) for A¢ # A° and every t (Newey & McFadden| (1994)), the criterion

function is continuous and the parameter space ©*¢ is compact. [

Proof of Theorem [4): In the proof of asymptotic normality of the four-stage estimator, we
rely on the theorems in [White (1996) for two-stage estimators and theory developed in
Blasques et al.| (2023) for establishing the asymptotic normality of the estimators that are
based on the filtered time-varying parameters.

For convenience, we denote as QT(H) a 4-dimensional vector with the criterion func-
tions of each step of the estimation procedure as the elements of the vector, i.e. QT(O) =
(Qgpl)(e(l)), Qg?)w(?)), Q?>(9(3))7Q$)(9(4)))T7 where the ‘hat’ highlights that the criterion
functions depend on the filtered time-varying parameters ft and g;. The ‘blocks’ of the esti-
mator @7 are obtained sequentially in four steps by minimizing corresponding criterion func-
tions given the filtered time-varying parameters f; and g;, i.e. Or = (éf(pl ), éT ,077.077)T =
arg mingeco Qr(0).

First, we derive the asymptotic distribution of the estimator 67 which minimizes the

criterion function Qr(80) evaluated at the limit sequences f; and g;. Then, we show that
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67 has the same asymptotic distribution as 6.

The proof of the asymptotic normality of @7 is based on Theorem 6.10 in White
(1996) which we generalize to the 4-step estimator. By the mean value theorem, we
have VgQT(éT) = VoQr(60) + Ar(6%) (éT — 00>, where, with some abuse of nota-
tion, 8% lies (row-wise) between 6, and 07 and A7 (8) := 7A,(0) with A, as defined
in (D.37). Since 67 is an m-estimator and assuming that A7(6%) is invertible, we obtain
VT <éT — 00) = — (AT(B}))A \/TVQQT(GO). Therefore, the asymptotic normality of 0r
follows if (a.) VeQr(60) % N (0, B(6;)) as T — oo; (b.) Ar(0%) 5 A(6y) as T — oo
(c.) A(8p) is nonsingular.

Condition (a.) holds since it is implied by Lemma The non-singularity of the

limit, condition (c.), follows by the uniqueness of the minimum 6, which is established

in the proofs of Theorems [IH3] Theorems and Theorem 18.10 (vi) in [Van der Vaart

(2000) imply 6% L 0y as T — oo thus ensuring condition (b.), see Lemma [TAJ9, By

Slutsky lemma we obtain v/T (éT - 00> 4 N(0, A71(0,)B(8,)A~L(6,)) as T — oo.
If VT HéT - éTH Ly 0 as T — oo, then by Theorem 18.10(iv) in [Van der Vaart| (2000)),

67 has the same asymptotic distribution as 0. By the mean value theorem
VoQr(0r) = VoQr(07) + Ar(65) (éT - éT) ; 9)

where 6% lies, with an abuse of notation, (row-wise) between 6r and O7. Rearranging
the terms in @ and exploiting the fact that VOQT(éT) = VQQT(éT) = 0, we obtain
VT (VQr(6r) = VQr(0r)) = Ar(03)VT (0r — 0r) .

By Lemma the left hand side converges to 0 almost surely. Lemma to-
gether with 6% Ly 6, imply that Ar(6%) i A(0y) as T — oo. Therefore, we have

VT HONT — éTH 50asT — 0o, which completes the proof. [ ]
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SUPPLEMENTARY APPENDIX
A Multilevel Factor Model

with Observation-Driven Dynamics

Mariia Artemova, Francisco Blasques, Siem Jan Koopman

A Data

Group Group N | NAICS | Group Group N ‘ NAICS
abbreviation abbreviation

1. Agriculture, | AFFH 2 11 7. Finance, insurance, | Fin 6 52-53

forestry, fishing, and real estate, rental, and

hunting leasing

2. Construction Constr 1 23 8. Professional and | PBS 6 54-56

business services
3. Wholesale trade WT 1 42 9. Educational ser- | EHS 4 61-62

vices, health care, and
social assistance

4. Retail trade RT 1 44-45 10.  Arts, entertain- | AER 5 71-72, 81
ment, recreation,
accommodation, and
food services

5. Transportation and | TW 8 48-49 11. Government Gov 4 92
warehousing
6. Information Inform 4 51

Total: 11 groups, 42 se-
ries

Table A.1: Non-Industrial Production groups and number (N) of series in each
group. The table presents the names of the groups together with their abbreviations as well
as the number (N) of series in each group. The column NAICS code corresponds to the NAICS
code that was used to define the groups. The abbreviation stated in the table is further used in
the network analysis.



Group Group N | NAICS Group Group N ‘ NAICS
abbreviation abbreviation
12. Logging Log 1 1133 24. Chemicals Chem 6 325
13. Mining Min 4 211, 212 | 25. Plastics and rubber | Plast 2 326
products
14. Support activities | SAM 1 213 26. Nonmetallic min- | NMP 5 327
for mining eral product
15. Utilities Util 2 221 27. Primary metals PM 4 331
16. Food Food 9 311 28. Fabricated metal | FMP 9 332
product
17. Beverage and to- | BT 2 312 29. Machinery Mach 6 333
bacco
18. Textile mills and | TM 5 313, 314 | 30. Computer and elec- | CE 6 334
textile product mills tronic product
19.  Apparel, leather | AL 2 315,316 | 31. Electrical equip- | EE 4 335
and allied products ment, appliance, and
component
20. Wood products Wood 3 321 32. Transportation | TE 7 336
equipment
21. Paper Paper 2 322 33. Furniture and re- | Furnit 2 337
lated product
22.Printing and related | Print 1 323 34. Miscellaneous Miscel 2 339
support activ.
23. Petroleum and coal | Petrol 1 324 35. Newspaper, peri- | Newsp 1 5111
prod. odical, book, and direc-
tory publishers
Total: 24 groups, 87 se-
ries

Table A.2: Industrial Production groups and number (V) of series in each group.
Most of the groups were defined based on the three-digit NAICS level except Logging and News-
papers groups for which only four-digit level is available according to the Board of Governors
of the Federal Reserve System. Several groups were further united roughly according to their
appearance in the input-output table. Particularly, we unite the following groups: Mining = QOil
and gas extraction + Mining (excluding Oil and gas extraction); Utilities=Electric power gen-
eration, transmission and distribution+Natural gas distribution; Textile mills+Textile product
mills; Apparel+Leather and allied product. For further explanations, we refer to Table in
Supplementary Appendix.



Group abbreviation  Sector NAICS code  Weight
Log Logging 1133 0.24
Min Oil and gas extraction 211 6.5
Min Coal mining 2121 1.06
Min Metal ore mining 2122 0.4
Min Nonmetallic mineral mining and quarrying 2123 0.65
SAM Support activities for mining 213 1.21
Util E_lect.ric power generation, transmission, and 2911 3.06
distribution

Util Natural gas distribution 2212 1.61
Food Animal food 3111 0.43
Food Grain and oilseed milling 3112 0.8
Food Sugar and confectionery product 3113 0.53
Food Fruit and vegetable preserving and specialty food 3114 1.03
Food Dairy product 3115 0.83
Food Animal slaughtering and processing 3116 1.34
Food Seafood product preparation and packaging 3117 0.14
Food Bakeries and tortilla 3118 1.21
Food Other food 3119 1.21
BT Beverage 3121 1.34
BT Tobacco 3122 1.13
™ Fiber, yarn, and thread mills 3131 0.19
™ Fabric mills 3132 0.58
T™ Textile and fabric finishing and fabric coating mills 3133 0.26
™ Textile furnishings mills 3141 0.33
™ Other textile product mills 3149 0.21
AL Apparel 315 1.47
AL Leather and allied product 316 0.26
‘Wood Sawmills and wood preservation 3211 0.39
Wood Veneer, plywood, and engineered wood product 3212 0.31
Wood Other wood product 3219 0.68
Paper Pulp, paper, and paperboard mills 3221 1.63
Paper Converted paper product 3222 1.43
Print Printing and related support activities 323 2.28
Petrol Petroleum and coal products 3241 2.11
Chem Basic chemical 3251 2.34
Chem Resin, synthetic rubber, and synthetic fibers 3252 1.1
Chem Pesticide, fertilizer, and other agricultural chemical 3253 0.48
Chem Pharmaceutical and medicine 3254 2.89
Chem Paints, coating, and adhesive 3255 0.53

Table A.3: Industrial Production sectors (I/II).



Group abbreviation  Sector NAICS code  Weight
Chem Soap, cleaning compound, and toilet preparation 3256 2.35
Plast Plastics product 3261 2.39
Plast Rubber product 3262 0.76
NMP Clay product and refactory 3271 0.24
NMP Glass and glass product 3272 0.58
NMP Cement and concrete product 3273 0.84
NMP Lime and gypsum product 3274 0.11
NMP Other nonmetallic mineral product 3279 0.37
PM Iron and steel products 3311 1.47
PM Alumina and aluminum production and processing 3313 0.46
PM Nonferr(.)us Metal (ExcePt Aluminum) 3314 0.47
Production and Processing
PM Foundries 3315 0.7
FMP Forging and stamping 3321 0.49
FMP Cutlery and handtool 3322 0.32
FMP Architectural and structural metals 3323 1.14
FMP Boiler, Tank, and Shipping Containers 3324 0.53
FMP Hardware 3325 0.26
FMP Spring and wire product 3326 0.19
FMP Machine shops, turned product, and screw, nut, and bolt 3327 1.07
FMP Coating, engraving, heat treating, and allied activities 3328 0.42
FMP Other fabricated metal product 3329 1.28
Mach Agriculture, construction, and mining machinery 3331 1.17
Mach Industrial machinery 3332 0.69
Mach Commercial and service industr}.r machinery 3333 2.09
and other general purpose machinery
Mach Ventﬂati(')n7 heajcing, z}ir—conditioning, and 3334 0.68
commercial refrigeration equipment
Mach Metalworking machinery 3335 0.77
Mach Engine, turbine, and power transmission equipment 3336 0.71
CE Computer and peripheral equipment 3341 1.51
CE Communications equipment 3342 1.39
CE Audio and video equipment 3343 0.15
CE Semiconductor and other electronic component 3344 2.53
CE Navigational‘, measuring, electromedical, 3345 256
and control instruments
CE Magnetic and Optical Media 3346 0.18
EE Electric lighting equipment 3351 0.32
EE Household appliances 3352 0.46
EE Electrical equipment 3353 0.83
EE Other electrical equipment and component 3359 0.82
TE Motor vehicle 3361 2.49
TE Motor vehicle body and trailer 3362 0.39
TE Motor vehicle parts 3363 2.92
TE Aerospace product and parts 3364 3.21
TE Railroad rolling stock 3365 0.19
TE Ship and boat building 3366 0.51
TE Other transportation equipment 3369 0.18
Furnit Household and institutional furniture and kitchen cabinet 3371 0.85
Furnit Office and other furniture 3372,9 0.63
Miscel Medical equipment and supplies 3391 1.32
Miscel Other Miscellaneous Manufacturing 339 1.31
Newsp Newspaper, Periodical, Book, and Directory Publishers 5111 3.55

Table A.4: Industrial Production sectors (II/II).



As mentioned in the main text, to obtain a fully quarterly dataset, we disaggregate the
annual (non-IP) data into quarterly series using a mix of the Al-Osh (1989)) and Silva &
Cardoso (2001) methods. Here, we provide the details on the disaggregation methodology.

Overall, the methods for temporal disaggregation can be divided into two groups: meth-
ods that use some high-frequency related series, indicator variables, and smoothing ap-
proaches that do not rely on any indicator variable. The indicator variables exploit the
fact that economic time series tend to co-move together. For example, due to economic
events affecting them in the same way. Hence, temporal disaggregation methods with in-
dicator variables estimate the unobserved sub-period values of the target series such that
the short-term dynamics of the indicator variable is preserved and the temporal additivity
constraint is satisfied.

Whenever an indicator variable is available we apply a dynamic Chow-Lin regression
method as proposed in Silva & Cardoso (2001). In total, we find indicators for 21 out
of 42 non-IP sectors. The list of the used indicators is presented in Table [A.5] The
choice of the indicator variables is based on a correlation between the target series and
aggregated indicator, and the explanatory power of the indicator in the regression used for
the disaggregation. The indicator variables are also chosen such that they are related to
the target variable from the economic perspective. Overall, in many cases, we use growth
rates of employed people in the corresponding group as an indicator variable; for the trade
and transportation groups, we often use the growth rates of the real imports.

Since it is not always possible to find a good indicator for the disaggregation, we also
use the method proposed in |Al-Osh| (1989), which is based on a linear dynamic model and
ARMA representation of the unknown series corresponding to the disaggregated target
variable. The measurement equation comes from the temporal additivity constraint, while
the transition equation is based on ARMA representation, which is cast to a state space

form. To choose the order of the ARMA model we follow the procedure proposed by |Al-Osh



(1989). For the majority of the series we use AR(1) representation.

Sector Indicator (growth rates) p(%) | R2(%)
Farms Gross value added 82.45 67
Construction All Employees 83.6 69
‘Wholesale trade Imports 52.37 25.2
. Imports 70
Retail trade Real PCE 73 58
Average Weekly Hours 51.96
Air transportation Exports 46.1 42
Real PCE: Transport. services 46.4
. . Exports 54.7
Rail transportation Imports 50.2 33.5
. Average Weekly Hours 32.4
Truck transportation Empl(;gyment/P};pulation (Men) 80 67
Imports 64.77
Other transport.&support activ. Real PCE: Transport. serv. 40.5 57.8
Employm./Popul. (Men) 69.1
. Imports 71.67
Warehousing and storage Prcr))duction and Nonsuperv. Employees 66.23 53.2
Legal services Real PCE: Services 62.47 37.2
Computer systems design and related services All Employees 66.84 43
Miscel. profes., scientific, and technical services | Employment/Population 63.25 38.1
Administrative and support services glldl’l}])iilor;iliz};lete/sl:’opulation ;23 60
Ambulatory health care services Real PCE: Household Consumption Expendi- | 54.65 27.7
tures: Health Care
Performing arts, spectator sports, museums All Employees 52.8 25.7
Accommodation Employment/Population (Men) 78.9 61
Food services and drinking places All Employees 65.5 41.2
Other services, except government All Employees 71.98 50.4
General government (FEDERAL) All Employees 69.27 46.4
Government enterprises (FEDERAL) E(r)rf)};llf‘;ﬁ:nt /Population gg; 44.4
General government (States and Local) All Employees 65.5 41.1

Table A.5: Indicators used in the dynamic Chow-Lin regression for disaggrega-
tion of the non-IP sectoral growth rates. All indicator variables are seasonally adjusted
and were collected using the FRED economic database. The series all employees, average weekly
hours, and production and nonsupervisory employees correspond to the particular group. For
example, the series All Employees used for the disaggregation of the Administrative and support
services sector series is All Employees in Professional and business services group.

B Additional empirical results

B.1 Factors and loadings

This section contains additional empirical results for the estimated factors and loadings.
Particularly, in Figure B.1], we demonstrate the estimated loadings for all the IP and non-IP
sectors. We find that most of the loadings on the common factor are positive. Hence, most

of the sectors respond procyclically to the aggregate shocks. The largest negative loadings
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correspond, for example, to the General government (federal) (Gov group) and Federal
reserve banks, credit intermediation, and related activities sectors (Fin group). Intuitively,
we expect these sectors to respond counter-cyclically, because, for example, during crises
they reflect the adoption of stimulus packages. Nevertheless, we find that the R? for all the
sectoral series with the negative loadings on the common factor are low, hence aggregate

shocks do not play important role in explaining the variability in them.
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Figure B.1: Estimated loadings on the common factor: non-IP sectors (top) and
IP sectors (bottom). The color of the bar indicates the group that the series belong to. The
groups’ name abbreviations are provided in Tables and

Once the group-specific factors and respective loadings have been estimated, we can
investigate the importance of the group-specific factors in explaining the variability of the
sectoral data. Specifically, to rank the sectors based on the importance of the group-
specific factor, we compute the increments in R? (Table . The increments are defined
as a difference between the R? calculated after Step IV of the estimation procedure, hence
when regressed on both the common and corresponding group-specific factors, and the R?

when regressed only on the common factor, thus R? after Step II.
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IP sectors AR?(%) | non-IP sectors AR%(%)

Ten sectors with largest increment in R?

Support activities for mining 29.878 Hospitals & nursing & residen. care facil. 36.066
Apparel 15.456 Forestry, fishing, & related activ. 29.162
Leather & allied prod. 14.769 Wholesale trade 28.845
Medical equipment & supplies 12.941 General gov. (States & Local) 27.822
Textile & fabric finishing and coating mills 10.374 Motion picture & sound record. industr. 27.341
Newspaper, period., book & direct. publishers  10.032 Water transportation 26.933
Computer & peripheral equipm. 9.97 Rent. & leasing services 26.634
Basic chemical 9.549 Construction 24.868
Metalworking machinery 9.470 Management of companies & enterprises 22.076
Printing & related support activ. 8.658 Miscel. prof., scientific & technical services  21.714

Ten sectors with smallest increment in R?

Oil & gas extraction 0.055 Insurance carriers and related activities 2.538
Converted paper product 0.051 Rail transportation 2.470
Nonmetal. mineral mining & quarr. 0.043 Food services & drinking places 2.166
Ventilat., heating,air-condition. 0.041 Warehousing & storage 2.060
Pharmaceut. and medicine 0.015 Other services, except gov. 1.675
Animal slaught. and processing 0.015 Other transportation & support activ. 1.635
Metal ore 0.005 Accommodation 1.291
Railroad rolling stock 0.001 Truck transportation 1.002
Ship & boat building 0.001 Air transportation 0.096
Coal mining 0.000 Funds, trusts, & other financial vehi. 0.075

Table B.6: Regression of the sectoral growth rates on the common and group-
specific factors. We demonstrate the top and bottom ten ranked IP and non-IP-sectors ac-
cording to the increments in the R%. The increment is computed as a difference between the R?
of the regression of the sectoral growth rate on the common and corresponding group-specific
factors and the R? of the regression of the sectoral growth rate on only the common factor.

We find that the increments are larger for the non-IP sectors, hence the group-specific
factors explain more variation in the non-IP sectors. Therefore, the common factor is
more related to IP sectors while the group-specific factor dynamics are more important for
non-IP sectors. Overall, the largest increments in the R? appear for Hospitals and nursing
and residential care facilities, Support activities for mining, Forestry, fishing and related
activities, and Wholesale trade sectors. We note that many of the top ten ranked non-IP
sectors had low R? when regressed only on the common factor. Therefore, these sectors are
mostly related to the group-specific factors. The exceptions are Construction, Wholesale
trade and Miscellaneous professional, scientific and technical service sectors, which have
both high R? when regressed only on the common factor and large increments, hence both
factors are important for these sectors.

In Figure [B.2] we also demonstrate that most of the loadings on the group-specific



factors are positive, especially for the non-IP sectors, therefore the majority of the sectors
co-move within the group. Moreover, the loadings are larger for the non-IP sectors than
for the IP sectors. We also find that the non-IP group specific factors have on average

larger variation than the common factor while for the IP sectors we observe the opposite

(Table [B.7).
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Figure B.2: Histogram of the estimated loadings on the group-specific factor. For

comparison of the loadings between the different groups, we report the rescaled loadings where
the scale is equal to the standard deviation of the corresponding group-specific factor.

Common factor IP factors non-IP factors

All 0.104 0.044 0.155
Top 3 - 0.195 0.259
Top 5 - 0.146 0.227

Table B.7: Variance of the factors. We report the sample variance of the common factor,
the average of the sample variances of the group-specific factors that correspond to either IP
sectors or non-IP sectors. We also report the average of the variances among the top 3 and top 5
sectors with the largest variance among the IP and non-IP sectors.

B.2 Model specification

Before proceeding with the granularity and network analysis we examine the residuals
obtained after Step IV of the estimation procedure to make sure that they correspond to

proper uncorrelated ‘innovations’ in the time-series sense. From the standard diagnostics
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we find the traces of significant autocorrelation in the residuals after the extraction of the
dynamic factors. This means that further idiosyncratic dynamics is present in the data. To
account for this we additionally model the residuals as AR(1) processes. The coefficients
of the estimated AR(1) model are shown in Figure We find that coefficients for the
non-IP sectors are typically larger than for the IP sectors. Once we fit the AR(1) models

on the residuals we test again for the presence of the autocorrelation. The results of the

multivariate autocorrelation test (Liitkepohl, 2005) are presented in Table [B.§ We find

no evidence of autocorrelation up to lag 9. Therefore, we model residuals using AR(1)
model. Additionally, we test whether the residuals are Gaussian since our (G)IRF analysis
is based on this assumption. However, we reject the hypothesis of the normally distributed
innovations. Therefore, we stress that we should interpret our network empirical results

with cautious.
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Figure B.3: Histogram of the estimated coefficients of the AR(1) models. The
univariate AR(1) models were estimated using the residuals after Step IV.

N of lags 1 2 3 4 5 6 7 8 9
p-value 0.325 0.277 0.279 0.260 0.260 0.262 0.273 0.265 0.273

Table B.&: Results of the multivariate autocorellation test.
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C Forecasts, IRFs and connectedness

One-step-ahead forecasts (h = 1) directly follow from the updating equations since the
factors are updated based on a mean reversion term and an autoregressive part: the update
only uses current values of fr, gr and yr. Forecasts at longer horizons can be obtained by
using predicted values in a recursive way. For example, h-step-ahead forecast for yrp can

be produced as follows:

Vrin = Elyrin|Fr] = AE[fron|Fr] + A’E[grin|Frl,

where E|fris|Fr] and E[gr | Fr| are h-step-ahead predictions for the common and group-
specific factors, respectively. Intuitively, using this model we can assess which part of the
increase or decrease in y; 115 is expected to be attributed to the common factor and/or to
the group-specific factor.

In policy analysis it is also important to produce Impulse Response Functions (IRF's)
that show how variables respond to the impulse in another variable (or group of variables).
For example, if we are interested in the IRF of each variable due to a shock in one of the
groups s, then numerically we set the size of the shock € = 1y,/N; (or proportionally
to the standard deviations) and all other elements of the vector of innovations to zero.
Additionally, we set f; = 0 and g, = 0. Then we iteratively obtain impulse response
function as a function of i by generating y;1, according to the system equations (1)—(3).

Analytically, this procedure can be summarized as follows:

8Yt+h

e’ = E[Yt+h|]:t7 85] - E[yt+h|-/—-;f]v
€

where F; denotes the information set up to time ¢ that contains observations before the

shock occurrence.
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When covariance matrix 3 of innovations is not diagonal, generalized impulse response
(GIRF) analysis proposed by Koop et al.| (1996) can be considered instead. Particularly, in
our application we assume that in group s an exogenous shock occurs with the size of the
shock &} = 3+ %e, where e, is an N, x 1 vector such that e, = (1/N,,...,1/N,)T. When
innovations are Gaussian contemporaneous responses in other variables can be obtained as
follows:

S S
ayi,t . agi,t

_ ) —1 _s
des  Oeb s, €,

where 3J; ; is an Ny x 1 vector that contains covariance terms between sector ¢ and sectors
in group s. For further horizons GIRFs are obtained according to system equations f
as discussed above. The square root of the group s covariance matrix 3, can be obtained
using, for example, Cholesky or Schur decomposition.

In our application, we measure group interconnectedness using the generalized impulse
response functions. Specifically, we use approach proposed in Diebold & Yilmaz (2014)),
but instead of variance decompositions we focus on (G)IRFs. We also modify the approach
to account for the group rather than individual interconnectedness. Below we give the
details about our group connectedness measures.

Assume that at time ¢ = 0 a shock occurs in each of the innovations of variables in
group s and we are interested in how other groups respond to this shock. For this, we
can compute (generalized) impulse responses of all variables due to a shock arising in one
of the other groups as discussed above. We denote period ¢ response of variable k due
to a shock in group s as IRFy, s, for k = 1,...,N and s = 1,...,5. We are further
interested in the connectedness between the groups, hence we denote average pairwise
connectedness measures from group s to group ¢ t periods after the shock occurrence as

Oist = N% Zivzl IRF}y 5., which is the average impulse responses of group ¢ due to a shock
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in group s. In Table we schematically illustrate the connectedness matrix, which
consists of the average pairwise connectedness measures for each group.

The average pairwise connectedness measure will be uninformative about the strengths
of the connections when the responses of the units within a group are of different signs.
Therefore, if we are interested in the strengths of the links we denote the average absolute
pairwise connectedness measure from group s to i as ;5; 1= Nl 21]::1 |I RFy(s:|, which is

not sensitive to the sign of the response.

‘ Group 1 Group 2 e Group S ‘ In-degree
Group 1 011, 012, T b15,t 25:1,#1 015t
Group 2 021 0221 e 25t Z}q:l,j;éz O2;.¢
Group S 051t Os2,t e 055t Z}‘g:l,j;és 055t
Out-degree ‘ Zf:u# Oi1+ Zf:“#g Oiot -~ Zf:l,i;és Ois,t ‘
Table C.9: Connectedness table. 6;;; := N%ZkNQ IRFy j; is a group average impulse

response to a shock in sector j. IRFy.;; denotes impulse response in sector k£ due to a shock
arising in group j t periods after the shock occurrence.

To further identify the most central groups in the network we compute their centrality.
Specifically, we use pairwise connectedness measures (in- and out-degree centrality mea-
sures) as in Diebold & Yilmaz (2014)), which take into account the direction of the relations
and the strength. In-degree centrality shows how the node responds to its neighbors, while
out-degree centrality indicates how big is the response of the neighbors due to the impulse
in the node (Table . We use these measures in our application to summarize results

from the impulse response analysis.

13



D Technical Appendix
To shorten further notation in the proofs of Propositions [If and [2| we introduce
1 S 1 N
P(yt) == g ; E ;yi,ta

1 Qs

V(i S A9 = 5 D (Wi = Xiofi)
S =1

then the factors’ updating equations take the following form

fer1 = Bo(ye) + (v — B fe, (D.1)
gf+1 :Bsw(Yf7ft7A§)+ (78 _58)957 s = 17"'7S' (Dz)

We also denote the stochastic recurrence equations for the common factor as fiy1 := ®(yy, ft;0)

and for the group-specific factors g; := V(y7, fi,9;;60), s=1,...,S.

D.1 Derivatives
Derivatives of the time-varying parameters

In this section, we provide the analytical expressions for the derivatives of f;(0) and g.(0) with
respect to parameters 81, 02, 93 94 where 81 = 0¢, 09) = AS, 0§3) =67, 0§4) = AJ for

s=1,...,5. These expressions are further required for the asymptotic covariance matrix of the
estimators.
Ofri1(0
fta(0) = PO _ ¢y o) + (- 91110, (D3)
0 f111(6)
" 1(0) = " = C(£/(0)) + (v — (0), D.4
falB) = B = CUHO) + (11— )5110) (0.4

where C¢(yy, fr) = (o(y:) — f:(0), ft(e))T and C(z(0)) := (56(9)[—1, 1] + (z(9)[-1, 1])T).
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We further introduce the following notation for the derivatives of g.(8),

agt..(0)) 005 @\ "\
g£+1(0) — 9t+1( ) o 9t+1( )
061" 065

2 1 i 2 .S i !
o 6 o 6
g¢.1(0) := block-diag L()T ey L(L ,
20" 06\ 00300
| s T
0g9:(0) _ (99:(6) 997 (6)
06 06 T 96y )
0g1(0) _ (0gi(6)  9g7(0)\ "
T oF T ap .
For s=1,...,5 we have
S ags (9) S S C S
9:41(0) := #ég) = Colyi, £1(0), 97 (8); AS) + (s — Bs)gi"(0), (D.5)
s 9%9;,1(0) s )
gtﬁ(@) = ﬁ = C(gt/(e)) + (s — ﬁs)gt”(a)a (D.6)
06”06
99{11(0)  0gi11(6)
o~ ap [l
0g;41(0) 1 & dg; (0)
Tf— ﬁs]\[s;)\z,s_f‘(')/s Bs) 8f ) (D7)
99;:1(0) 1 dg;(0)
OT@ == _5SELNSft(9) + (’78 - ﬁs) 0§2) )
9%g;11(0) (1 T 093 (6) 0%g; (6)
ST = 1, 0T (Y i | 1O 1 1T (B
80§3)9(1)T [ ] Ns Zz; , ft( ) [ ] ae(l)T (7 5 )aagg)e(l)—r
0%gs. (6 005 (0 9245
00) _ (1, o7 Lo, + 11, T ) OO
RSEIS s 96? RSLS,

where Cy(y7, [u(6). 9 (0); AS) = (V(y7, 1(0); AS) — g7(6), 47 (6))
In practice, we approximate the derivates recursively, that is

ft’+1(9) = Cr(ye, ft(e)) + (v - 5)]?{(0)7

where the filtered sequence depends on the initial values fl and f{ Similarly,

f11(0) = C(f1(0)) + (v — )/ (6).
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0g:(6) 0g:(9) 9g7,1(0) 829;;-1(9)
’ 89(2) 9 6]" 9 80£3)0(1>T 89(3)0(2)7‘

Similar recursions follow for g;(0), g;(0)

Expressions for the derivatives of the criterion functions

Below, we provide the expressions for the derivatives of the stepwise criterion functions with

respect to the corresponding parameter of interest. The superscript indexes correspond to the

step of the estimation procedure. We also introduce the notation (1) := (0(1)T, ceey G(i)T)T.
First, we provide the expressions for the first-order derivatives:
1) p(1) g’ M g1
1) )y . 92 (6) 0) . o)
Vo (6%) = H 5 (6", (D3)
. 3q<2) 0 .
Vom0 = ) g0y, - Ao (D.9)
(3) rp(3:1) 9¢® (g3
3)p(3:1)y .__ aqt (0 )_ a4 ( ) sl pn(3:1)
vg?)‘]t (0 ) = 80§3) - ags Gt (0 )7
(4) 8qt(4)(0) s c (1) g9,.s(pB:1)\\,s/pn(3:1)
Vowa: () := 290 = —2(yi — ASfi(0Y7) — ALg(67)) g (67), (D-10)
dg: (61) RSN IR ;
T: —2 EZEZyi,t_ft(e( )) ) (D.11)
8q(3) 93:1)
e Zyzt - ZA SO~ g3 (0 ) (D.12)

with f/(6) and ¢;'(0) as defined in equations (D.3)) and (D.5)), respectively. We further introduce

the notation

.
) I R () S (i)
— A R A ,

T T
. aq(?’) 9(3:1) ' 6(](3) 0(3:1) , '
Vowa;” (0%)) = (( A ) RN e L

T

4 4 T 4 T
Vol ()= ((Tya) . (V00 0) )
We turn to the second-order derivatives. We have

q” (60)

Vowema ) (8W) = = 2£/(0M) (0N = 2p(ye) — £.(6W)) £7(6V),  (D.13)

90 ae()
2 (2) 9(2:1)
@ gy . o (0FY) cr oMY (g
\Y W) = (—2y; + 4A°F,(0 o), D.14
02914y ( ) 89( 1901 )T ( Y ft( )) ft( ) ( )
82q(2) (9(2:1))
v @ gy . 2% \T ) _ 929, D.15
0204 ( ) YO fi (0 Iy (D.15)
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We further denote ngg(k)qt(i)(a(i:l)) := block-diag (Voy)eik)qt(“(a(”l)), ... ,Vggog(szc)qy)(O(i:l)))
for i = 3,4 and k <i. Then, for s=1,...,5 we have

2 (3) (p(3:1) N s(p(3:1)
) @)y . (6©h) _ LZ 0G0 )N @)y (1) T
V0§3)0(1)qt (0 ) : aeg:’))ae(l)—r 2 Ns — )\1)3 + af 9t (0 )ft (9 )

0%g; (0131)

_ s MYy A€ — 45(031)
2(4(yi, f:(67), AS) — g7 (6 ))aeg?’)ag(l)—r’

(D.16)
. aQq(3) 931 .
Vo®e a” (03) = # = 2g7'(64)
T 06" 06?

1
Ny

o 5(0(3:1))
€] 99:\Y" ")
ft(6%)en, + 26

g (04

D.17)
= (
00> 50>

—2(y5, fi(0W), A) — g; (8BD))

3 .
(3)(0(3:1)) = 62(]15 : (0(31))
: 90 993"

=2 (g7 (0417 (0%1) ) — 2((y7, (), A%) — g3(81))g;" (6V), (D.18)

4)
) gy ._ %a (0)
v0§4>9<1>qt (0) := 60§4)80(1)T

Vogs)egs)q
1ip(O\WT (3:1) (1) (3:1) 895(0(3:1))
= 2A5(fi(6%7)) "g; (0777) — 2(y; — ASfi(077) —2AL97 (6D | —pomy— ) - (D19)

. 62q(4) 9B:1)
Vgl 000) = T L)

20"
s T
= 2g; (0P f(8W) Iy, — 2(y; — ASfi(0W) — 2A9g7 (03D)) agé) (D.20)
26!
. 924 (93:1)
v9<4>g<3>qg4)(9(3'1)) = ( T)
e 0696
= —2(y; — AZf(0W) — 2A9g7 (01))) g (0B ) T, (D.21)
aqM (0 .
Vol (6) = % = 2(g7 (0¥))* L, (D.22)
80 oeY
2 (1) (1) (3)rp(3:1)
Pa (07) _, 90 (07) _ (D.23)
an agSQ

where Iy denotes an N x N identity matrix.
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D.2 Proofs and other technical lemmas

Proof of Proposition[]: Given the linearity of the updating equation (D.1)), iterating it backwards

for the filter ft initialized at some value fl € R we have

t—1

fri1(6) = Z(’Y — B)'B(yi—i) + (v — B)' fi. (D.24)

1=0

Proposition |1| states that the effect of the initialization fl asymptotically vanishes as ¢t — co and

the filter ft converges to the limit f; which, if exists, is then defined as,

oo
fer1(0) = (v = B)'Bo(yi—i). (D.25)
=0
First, we establish the stochastic properties of the limit sequence. By monotone convergence

theorem and triangle inequality, we have

EZ\ v = B)'Bé(yi-i) Zw BI'1BIE|¢(ys—i)| < oo, (D.26)

=0 =0

where the inequality follows by Lemma 2.1 in Straumann & Mikosch (2006]) since |y — 8| <
1 and the sequence {|y¢|}iez is SE with E|ly:||> < oo, which is implied by Assumptions
and Therefore, the series > 7 ‘('y - B)iﬁqb(yt_i)’ is finite almost surely which implies that
Y20y — B) Bd(yi—i) converges almost surely. From Krengel’s theorem it then follows that the
limit sequence {f;(0)}ez is strictly stationary and ergodic since it is a measurable function of
{y+¢}tez which by Assumption [2| is strictly stationary and ergodic sequence. From [Potscher &

Pruchal (1997, Theorem 6.10) it also follows that Esupgeg | f:(0)]? < oc.

From (D.24) and (D.25|) we obtain,
sup | f1(8) — f:(8) = sup (v — B)'(f1 — f1(8))| < sup |y — B|'sup | f1 — f1(6)] <25 0 as t — oo,
0cO 0cO 0cO 0cO

where the convergence follows by Straumann & Mikosch| (2006, Lemma 2.1) since supgeg |y —
B| < 1 and Esupgee log™ |f1(8)] < oo. The former is guaranteed by condition |y — 8| < 1
and compactness of ©, while the latter is ensured by the existence of the second moment since
Esupgeg log™ [ f1(0)] < Esupgeg |£1(0)]* < oo

Conversely, if |y — | > 1 then the sum in would diverge, while if |y — 8| = 1 it may
diverge, hence the condition |y — 5| < 1 is a necessary and sufficient condition.

Finally, we show the uniqueness of the limit sequence {f;(6)}:cz by contradiction. Assume
the existence of two SE solutions to , {fi}tez and {fi}iez, then for t = t* such that fi« # fi

we have,

0 < Ifer = forl = Iy = B | frri = firea| . Wiz 0.
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We know that |y — B|" <225 0 as i — 0o and |f_; — fi—i| = Op(1) as it is strictly stationary,

hence P ( ft= ft) = 1 and uniqueness follows, which completes the proof. |

The claim about the moment bound of the limit sequence can be generalized to any k& > 2 if

the sequence {y;}+cz has sufficient number of moments.

Corollary TA.1. If E|ly:||* < co with k > 2 and conditions of Proposition |1| are satisfied, then
the limit sequence {f1(0)} ez satisfies Esupgeg | fi(0)|F < oo.

Proof of Proposition 2: The proof of this proposition is slightly different from the proof of the
Proposition [I] since g; depends not on the limit time-varying parameter f; but rather on the
filtered time-varying parameter ft. Therefore, we are dealing with the perturbed version of the

updating equation, that is

~

gf+1(0):\I’(yf,ft(O),gf(a)), 5:17"')5'

We further define the filtered sequence that is the solution to the perturbed equation as {g; () }en,

to the unperturbed one as {g;(0)}+en and the limit sequence as {g;(0) }1cz which, if exists, is as

follows,
91+1(0) = i(% = Bs) [Bs(yi i, fi-i(0); AD)]. (D.27)
i=0
By the triangle inequality we have,
sup 197 (60) — g7 (0)] < sup 197 (6) — 37 (0)] + sup |97 (0) — g£ (0)]. (D.28)

For the first term on the right-hand side by the mean value theorem we have,

~

OV (v}, ft,9:(6)) f:(6) — f,(0)

of

sup
0co

)

sup |97 (0) — g7 (0)| < sup
0c6 0co

€.a.S.

where f lies between f; and f;. We can then conclude that supgee |35(0) — §7(8)] <225 0 as

t — oo by Lemma 2.1 in [Straumann & Mikosch| (2006|) since supgcg ‘%ﬁc’gf(e))

bounded and by Propositionsup(,e@ (ft(e) — f:(0)

is established as follows,

is uniformly

€.a.S.

— 0 ast — oo. The uniform boundedness

N N,
a‘I’(Yf,ft*,gf(‘)))‘ I O 9g;_1(0) 1
sup =sup |—fBs— E N+ (vs = Bs) 57| <sup |Bs— § Ais
0co of oco| Ns =" g ) of oco| Ns= "
9g;_1(0)

+ sup |vs — Bs| sup _1‘ < 00,
0co oco| Of
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where given the expression for 8955}9) in and since supgeg |7s — Bs| < 1, the last inequality
follows.

It remains to show that the second term on the right hand side in converges e.a.s. to
zero and the properties of the limit sequence. These can be shown using the similar arguments
as in the proof of Proposition [I] Specifically, using monotone convergence theorem it is easy to
verify that the limit sequence is converging almost surely. Then the stationarity and ergodicity
of the limit sequence {g;(0)}+cz follows by Krengel’s theorem since it is a measurable function of
{y+}tez and { fi }+ez which by Assumption [2and Proposition 1| are strictly stationary and ergodic.
The proof about the moment bounds is similar to the proof in Proposition

Therefore, for the second term on the right hand side in we obtain

sup |g; (8) — 67 (8)] < sup |vs — Bs[" sup g — gi(8)] === 0 as ¢ — oo,
0co 0co 0co

where the convergence follows again by Lemma 2.1 in Straumann & Mikosch! (2006) given that
SUpgeo [7s — Bs| < 1 and Esupgee log™ |g5(0)] < oo. Conversely, if |ys — 85| > 1 the sum in (D.27)

would diverge; if |ys — fBs| = 1, the sum may diverge.
The uniqueness of the limit sequence {g;(0)}iez follows a proof by contradiction as in the

proof of Proposition [ |

Corollary TA.2. If conditions of Propositions[1] and[3 and Corollary are fulfilled, then the

limit sequence {g:(0)}1cz satisfies Esupgee ||g:(0)|F < 0.

Lemma TA.1. Let conditions of Theorem[1] hold. Then

sup |Q(8) — B[V (v1, £(8),0)]] =50 as T — oc.

6coc

Proof. We establish the strong uniform convergence by applying ergodic theorem for separable
Banach spaces of [Rao (1962) to the sequence {¢™")(y, fi(-),-)}. The conditions of the theorem

are satisfied, since

1. {¢W(ys, fi(-), ") }rez is an SE sequence, which follows by application of Krengel’s theorem,

as ¢! is continuous on the SE sequence {(y;, fi)}tez.
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2. ESUPHG@C |q(1)(yt7 ft(e)v 0)| < 00, since

E sup |¢P (y¢, £:(8),0)| = E sup (
0co¢°

9co° g5:1 73@71

11 & ’
<cE|= — s + cE sup | f:(0)]?
i3 ()| vz g o

where in the last line we used several times Loeve’s ¢, inequality. Therefore, given that E|ly;|| < co

by Assumption [3| and from Proposition [I| Esupgege | f:(8)|> < oo, the results follows. [ |

Lemma TA.2. Let conditions of Theorem hold. Then a plug-in filter ft(é(Tl),fl) converges

almost surely,
\ft(é(Tl),fl) - ft(eél))! 2% 0as t,T — .

Proof. By the triangle inequality, we have
(67, f1) = Fi(667)] < 1705, Fr) = Fu06" Fl + 17667, ) - 185l (D.29)

where the second term in the expression above goes to zero e.a.s. as t — oo since the filter is
uniformly invertible, see Proposition
For the first term in (D.29)), by unfolding it recursively, we notice

sup |£:(0, f1) — £:(65", )

6coc

< sup |Bé(ye1) + (v — B) f1(605", 1) — Bod(ye—1) — (0 — Bo) fi-1 (85", f1)]

6coc

+ sup |(v = B)(fiu1(0, f1) — fir (65", 1))

6coc
t—1

<Y sup [y -4 Sup 1B6(yi—i) + (v = B)fi—i(05", f1) = freiza (65", ).

— oecor

From the strong consistency of é;l ), we can conclude that | ft(ég ), f1) — ft(eél), f1)] 2250 as
T — oo which completes the proof. |

Lemma TA.3. Let conditions of Theorem[3 hold. Then

sup

feore @ (e’é(Tl)) - Q% <0=9(()1)>‘ as T — .

Proof. The uniform convergence follows by Theorem 3.7 in [White (1996)) since é(Tl ) a5, 0(()1) as

21



T — o0, ©° and ©* are compact, criterion function is continuous and

sup  sup Q( )( ).00) — Q@ (0@ 01| 2250 as T — co.
(e 9(2) c@c

The latter follows again by application of Theorem 6.5 in |[Rao| (1962)), as

1. {q(2) (vt, ft(+), - }tez is an SE sequence, which follows by application of Krengel’s theorem,

as ¢? is continuous on the SE sequence {(y, i) }ez.
2. trivially Esupg)cge SUPg2) core !q(2) (ye, £:(61),0))| < .

Therefore, we conclude that

QP (62).65)) —Elg® (y1, £1(85"),6)]| £ 0 as T — oo.

sup
0(2)ce*c

Sketch of the proof of Theorem[3: The proof of this theorem consists of three parts. The first
part establishes the consistency of the step III estimator, i.e. ég k 08 , the second part is
about the convergence of the plug-in filter Hgt(é%) —g:(69)|| == 0 and the last part is about the
consistency of the step IV estimator.

The proof of the first and last parts requires the uniform convergence of the corresponding
criterion functions to the limit criterion functions as well as identifiable uniqueness of the es-
timators. The former can be proved using Theorem 3.7 in White| (1996) and Theorem 6.5 in
Rao| (1962)). We again need to take into consideration that the function depends on the filtered
time-varying parameters rather than on the limit counterparts. Identifiable uniqueness is proved
using the same reasoning as in the proofs of Theorems [If and

Now we turn to the strong consistency of the filter. The reasoning is similar to the proof in

Theorem (1}, that is by the triangle inequality we have

0(3 1) 0(3¢1)

,g1) — 9(0 )

)

305, 1) - (65| <

305 31) - (65, 90)|

where the second term vanishes to zero e.a.s. as t — oo since the filter is uniformly invertible (see

Proposition . Now we show that the first term also goes to zero a.s.. Repeatedly unfolding the
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expression, for s =1,...,.5, we have
sup

061 -6 9t (9(3 U,gf) 4 (9(3 1) AS)

< sup [Ba(yiit, fi1(0M);0@) + (vs — Bs) g5, (65, 47)
631 co

— B0 (yi_1, f1(85):60) — (5.0 — Bi0)di1 (857, 3)]

+osup (s — Be)(@5-1(04M, ) — a5 (65%V, 83)]
9<3'1)e®
<Z sup |5 — Bt sup [Bo(yis, fis(61)),607)

i—1 031 ee 03 eo

3 ~S A8 3: A8
+ (s — B)di (O 53) — g5 (B 53)).

From the strong consistency of é(l), ég? ) and é(3) that was established in Theorems we

conclude that |g; (0 ?1)) g; (6 31))| 2% 0 as T — oo. [

Lemma TA.4. Let conditions of Proposition (1| hold, then

a. the limit sequences of the first and second derivatives {f{(0)},c, and {f{'(0)},cy exist, are

SE and satisfy Esupgeg || f/(8)]]> < 0o and Esupgee || f/(8)]]> < co. Moreover,

€.a.S.

sup || f7(6) — f(6)] <> 0, sup || f/'(8) — f'(0)] =0 as ¢ — oc.
6co 6co

If, additionally, conditions of Proposition[d hold then

b. the limit sequences of the first and second derivatives {g;(0)},c, and {g{(0)},c; ewist, are

SE and satisfy Esupgeg ||g,(8)]|* < oo and Esupgee |97 (8)]|> < 0o. Moreover,

€.a.s. €.a.S.

sup [|g;(0) — g4(8)| — 0, sup [|g/'(0) — g/ (0)|| —— 0 ast— oc.
0co 0c6

Proof. The proof follows the same lines as in the proof of Propositions [I| and [2| by backwards

unfolding the system of equations f. |
Corollary TA.3. Let conditions of Corollary hold. Then the limit sequences of the first and
second derivatives satisfy Esupgee || f1(0)||F < oo, Esupgee || £/(0)]|* < oo, Esupgeg [|g1(0)|F <
o0 and Esupgee [lg7 (0)]|" < co.
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Lemma TA.5. Let conditions of Propositions (1 and[3 hold. Then it holds that

23 (0W)  9g(0M) ] s,
su - 0, D.30
beo|  Of af (D.30)
~(2 . 2 .
sup 93t? (6C1) - g O || 0 . D)
0c6 062 002 ’ :
030 (061) gD (961)) || Lo,
su . 0, D.32
eeg 0g dg ( )
03.7(0) 94" (0)]| cas.
- 0 D.33
i ol | PY-TEY 26 , (D.33)

. M g(1) g (g(2:1) (3) (g(3:1
as t — oo and the limit sequences {8q‘ a(f )} , {qt ( ) ; e LARR g; ) , and
t te teZ

80(2)
4
{&h( >(0)} are SE.
teZ

001

2r N
) . . 1) (1) (2) (g(2:1)
If, in addition, Assumptwn holds then E supgeeo %}H < 00, Esupgeg %?2)) ‘ <
. 2r r
aq(d) 9(3:1) (4) 0
00, Esupgeo % < 00, and Esupgcg 597@) < 00.

Proof. Given the expressions for the derivatives (D.11)) and (D.12), the convergence in (D.30)
and (D.32)) follows directly from Propositions [1| and 2l Establishing the convergence in (D.31))

additionally requires supgee |f2(8) — f2(0)] <225 0 as t — oo, see (D.9). The latter holds by
Corollary TA.15 in Blasques et al.| (2022). The conditions of the corollary are satisfied since by
Proposition |1 supgee | f:(8) — f1(8)] <225 0 as t — oo and Esupgee log™ | f+(0)] < .

Finally, holds since supgco 1£:(8)3:(8)— f:(0)g:(8)]| <225 0 as well as supgee [|92(0) —
97(0)|] %25 0 as t — oco. The former follows from Propositions [1| and [2] together with Lemma
TA.14 in Blasques et al. (2022), while the latter result is a direct implication of Corollary TA.15
in Blasques et al.| (2022)).

The limit sequences are SE by Krengel’s theorem and bounded moments follow by Assump-

tion Corollaries [TAJl] and [TA]2| given the expressions of the first derivatives (D.9)—(D.12). W

Lemma TA.6. Let conditions of Propositions [1] and[g hold. Furthermore, let Assumptions
and |4| be satisfied. Then the sequence {Vgqi(0)}icz is SE and NED of size —1 on a strongly

mizing sequence of size —r /(1 —r) for some r > 2.

Proof. By Assumptions [2/and 4] sequence {y;}icz is SE and NED of size —1 on a strongly mixing
sequence of size —r/(r — 1) for some r > 2. Propositions || and [2 together with Corollaries
[TA] and [T ensure that the limit sequences {f(6)}iez, {//(6) ez, {9:(8) ez and {g(8) hies
are SE, which are also jointly SE. Therefore, by Krengel’s theorem and continuity of Veg(+) it
follows that {Vgq:(0)}iez is also SE.
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Now we turn to the second part of the lemma about the NED property. We notice that

|fer1 — fioal < 1Bllo(ye) — oyl + |y — Bl fe — f7]
15 X
<IBls > 7 D wie —wiil + 1y = Bllfe = £71,
s=1""% =1
l9i1 — gi41] < |55H¢(Yf7ft) =y FOl+ 1vs — Bsllgi — g¢
1 N .
Ez)‘i,s
i1

<’55’72|%t yil + 18| e = £71+ bvs = Bsllgs — g

By assumption f € R, B, € R,A € RN, and |y — | < 1and |y, — s <1fors=1,...,8.
Moreover, under Assumption[3.a]y; has 2r bounded moments with » > 2 which by Corollaries[TAI]
and [2| implies that f; and gj also have 2r bounded moments. Therefore, by Theorem 6.10 in
Potscher & Prucha; (1997)) f; and g7 are NED of size —1 on a strongly mixing sequence of size
—r/(1 —r) for some r > 2. Lemma 6.9 in Potscher & Pruchal (1997) implies that the stacked
vector g; is itself NED.

We proceed similarly with the first order derivatives

I flen = ol S 1S (res £o) = Syt NN+ 1 = B — £
S
Z th uisl + 21— fr1+ v = BILAE = 7,

s Ix §/%

||ng-1 9t+1|| < ||Cg(ysa ) CQ(Yt ) t7gt )H"’(’Vs /BS)”gt — Ot I

_SZ Zlyzt v |+SZ Zzs

+2lg; — 98" + s — Bslllgy" — g |l

|fe = J7|

where in the last step we exploit the norm equivalence.

Using a similar argument as for the time-varying parameters themselves, by Theorem 6.10
and Lemma 6.9 in [Potscher & Pruchal (1997) we obtain that f; and g; are NED of size —1 on a
strongly mixing sequence of size —r/(1 — r) for some r > 2. This follows since A¢ € RY y;, f;
and g; are NED with 2r bounded moments.

By Theorern 17.12 in Davidson (1994), the sequences {Vg(l)qt ( Vrez, {Veo@ q,g (0)}iez,
{V9<s)qt ( Vhez, {Vowq®(0)}iez are NED. This follows as functions Vguyq™M (yy, fi, £1,0),
Vo d® (ye, £1:0), Vo d® (¥i, fir 9094 0), Voura® (v, f1,91,0) are Lipschitz continuous and
they are also functions of NED sequences. By Lemma 6.9 in Potscher & Pruchal (1997) we
conclude that the stacked vector {Vgq:(0)}icz is NED, which finishes the proof. |

Lemma TA.7. Let conditions of Propositions[1] and[3 hold. Moreover, let Assumptions and
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[4 be satisfied. Then
VTVeQr(6o) 4 N(0,B(80)) as T — oo,

with B(6o) as defined in Theorem [}

Proof. By Lemma we have {Vgq:(60)}cz is NED of size —1 on a strongly mixing process
of size —r/(r — 1) for some r > 2. Therefore, the proof is based on the central limit theorem for
near epoch dependent processes (Potscher & Pruchal (1997, Theorem 10.2). Below, we verify that
all the conditions of the theorem are satisfied.

First, we notice that E [Veq:(00)] = VeQoo(0o) = 0 where the interchange of the expectation
and derivative is permitted since the criterion function is continuously differentiable.

We notice that || Veq:(8)|| = (2;‘:1 Hngt(H)H2>1/ P <5 [ Voau(6)]. Hence, by Loeve's ¢,

inequality, there exists a constant ¢ > 0 such that,
4
r (@) "
Esup [Veq(0)||"” < ¢ Esup ||Vowg" (0)|| , (D.34)
6co — oco

where index i refers to the step of the estimation procedure.
To show that expression ([D.34]) is finite, we further consider the gradient of each of the steps.
Step 1. From and Cauchy-Schwartz inequality,

2r 1/2
r
Esp [ HO)] <.
6co

= Esup
6co

)
of

(1) "
%a_%) p1(g)

<|E
a7 sup

E sup Hvemqt(l)(e) =
0co 0c6

where the bounded moment claim follows by the fact that under Assumption y: has 2r

bounded moments. Then, Corollary implies that f/(@) has 2r bounded moments. The

) 2r
derivative Esupgcg 8% f(e) is bounded by Lemma [TAJ5

Step III. By Loeve’s ¢, inequality and Cauchy-Schwartz inequality,

E sup HV q(3)(9)Hr <c XS: E sup 8q§3) () g:'(0) r
3 ~ Cg A <
oco |l O ~ ool 0g°
1/2
S (3) 2r
dq;” (0) / 2r
< cq Esup |————=| Esup |l¢’'(0 < 0.
; 0co dg* 066” i )H

Similarly to step I, the expression is bounded since by Assumption [3.aland Corollary gi'(0)

® g |2
9a,_(6) ’ is also bounded which follows from

has 2r bounded moments. The derivative Esupgcgo

Lemma [TAFL

g%
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Step 1I. From equation , Loeve’s ¢, inequality and Cauchy-Schwartz inequality, we have

Esup Ve af” (6)| = Bsup |2/(6) (v = AS(O)" < B sup |2 (O)y ]
€
+ o Esup [A2/2(0) | < 26, (E|ly|* E sup | £:(6) ")/
6co 6co
+ 26, sup [ A°]" Esup | f(6)[* < oo,
6co 6co

where the final claim follows from Proposition |1 under Assumption Elly:||*" < oo, which by
Corrolary implies that f;(0) has 2r bounded moments.
Step IV. Considering equation (D.10)) and applying Loeéve’s ¢, inequality together with the

Cauchy-Schwartz inequality, we have

04" (8)) ||

Esup HV9(4>Q( )(O)H < s ZEsup 80( )
s—1

6co

= ¢g ZEsup 12(y; — ASfi(0) — Adg; (0))g; (0)]"
~ oco

S

< (3 2 (Elly? I sup 197 )"/ + ey sup | A" (E sup |£,(6) " sup g (0) )"
) 6co 6co 0co

+ ¢ sup || AZ]" Esup |7 (6)[*") < oo,
0co 0co

where in the last step we used the result of Proposition 2] and Corollary under Assump-
tion B.al

The gradients of all the steps are uniformly bounded, hence, expression is also uniformly
bounded, i.e. Esupgcg [[Voq(0)||" < oco. Therefore, all the assumptions of Theorem 10.2 in
Potscher & Pruchal (1997) are satisfied which finalizes the proof. [

Lemma TA.8. Let conditions of Propositions[1] and[ hold, then

VT sup HVQQT 0) —VoQr(0)| X0 as T — oo.

6co

Proof. We show a.s. convergence by establishing e.a.s. convergence of the time ¢ function contri-

butions, that is

zup Ved:(8) — Voqi(0)| <2250 as t — oo. (D.35)
cO
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By Loeve’s ¢, inequality

4
sup Vo (0) ~ Vou:(0)] sczgugvaqﬁ”(e)—m)qﬁ“(e)H
€O S

04" (0) ;
of

94."(8) ,,
of

04> ()  0q” (9)

062 062

< csup
6co

ft,(e) ft( ) csup

6co

A(3) 0)

A aq(S)(e) /
+ c¢ g su 57/(0 50
= 106p g; '(0) — 9g° gt (0)

aq§4)<e> ~94"(9)
904 004

+ csup
0co

(D.36)

By Lemma [TA 5| Propositions [1| and [2| and Lemma TA.14 in Blasques et al.| (2022) we obtain
that each term in (D.36)) converges e.a.s. to 0, hence (D.35)) follows. |

Lemma TA.9. Let Assumptions[I{3 hold. Then

sup |A7(0) — A()|| ¥ 0, as T — oo,
6co

where

B[V o (0] 0 0 0

A6) = E[vmmqtfz(e)] E[vewemq{:(en ° . 0 |
E[Vowend:” (0)] E[Veeea (0)] E[Vewewa; (0)] 0
ElVowena”(0)] ElVeueaa 0)] E[Vewena (0)] E[Vewewa " (6)]

[ Voo (60) 0 0 0 :
Ay(0) == V@(”mw%;w@i”) ve@)mmqf)(e(%”) 0o 0
Vowomd  (03V) Voweea” (001) Vogma” (3D) 0

i Vowend, () Vowewd,  (6) Vowewds () v0(4>9(4)Qt(4)(0)_

(D.37)

with the derivatives expressions presented in equations (D.13])—(D.22]).

Proof. The uniform convergence of the Hessian is obtained by the uniform law of large numbers

in Rao (1962). Below, we verify the conditions of the theorem.

1. by Krengel’s theorem {A:(0)}icz is an SE sequence since A¢(-) is continuous on the SE

sequences. The latter follows by Assumption Propositions (1| and and Corollary

which ensure that the sequences {y: }iez, {fi() ez, {fi() ez {f () }biez, {9:() hiez,
{9:(") }1ez and {g{(-)},cz are SE, which are also jointly SE.
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2. To establish that Esupgcg || A:(0)|| < 0o, by Loeve’s ¢, inequality we have

=1

1/2
E sup || A+(0)|| = E sup (E Vg )qg )(G(M))Taneu)qgl)(9(“)))
0co 0cO
= CZ Esup Hveuqui” (641) H . (D.38)
i (S

Let us consider the Hessians of each step.

Step 1. By norm subadditivity and Cauchy-Schwartz inequality

209 20V (8
Esup [Voogmal” )] = 2sup | 2422 oo™ + 2 o)
94" (0) dg," (6)
< Esu L '0) /()T || + Esu t 9
< 968 072 ————11(0)f1(0) Sup |57 +(0)
a (1) 0 2 1/2
< 2E sup '(O)ft'(H)T‘ + [ Esup %7() IEsuprt”(é’)H2 < 0.
6co oco| Of 6o

Step 3. By norm subadditivity, Cauchy-Schwartz inequality, and Loéve’s ¢, inequality, we

obtain
3 > 3
E sup HV9(3)9<3>Q§ )(O)H < cZEsup Hv9(3>9<3>q§ )(B)H =

0co —1 0co s e

( )(g 90 (0

S q S
e T g o o) + 2
—1 0co 9
1/2
S ®3) g |2
dq;,” (0
SCZ 2FE sup gf’(@)gf/(O)TH + | Esup qta E ) EsupHgS" H2 < 00,

—1 0cO 0cO 9

where in the last lines of Steps 1 and 3 we used (D.23)). The last claim for each of the steps is

obtained by Lemma and Corollary [TAJ3] since together they ensure that all the terms are

2
o’ 0" a0
—af g°

Corollary Esupgeoll f7(0)]* < oo and Esupgeel f{'(0)]* < oo, Esupgeellg:'(8)]* < oo and
Esupgeollgs”(0)|> < oc.

Steps 2 and 4. From ) and m

uniformly bounded. Particularly, by Lemma [TA

are bounded, while by

ot

EsupHV9<z o) d H —EsupHQ £(0)2Iy | < o,

Esup HV9<4)9<4)qt H < cZEsup H2 (95(8))*Iy,]|| < oo,

29



where in the second line we apply Loeve’s ¢, inequality and exploit the definition of Frobenius
norm. The final claim in both lines follows by Proposition [T] and [2| given Assumption [3.a]
Therefore, all the terms in (D.38)) are finite. Hence, we conclude Esupgcg [|A:(0)] <oo. N

E Additional Monte Carlo results

In this section we provide additional details on the Monte Carlo simulations.
In Table [E.I0, we provide the dynamic patters for f; and g; used in the simulation

design for the analysis of the forecasting group conditional mean.

Dynamics Common Group-specific
AR(1)+AR(1) Kfe + &1 Y g+ My

AR(1)+Break Kt + S at1(t < Tyreak,) + 051(t > Threak,)
Sine+AR(1) 1.5 sin (27t/100) Y 8+ M

Sine+Break 1.5sin (27r¢/100) as1(t < Tyreak,) + bs1(t > Threak.)

Fast sine + Steps  1.5sin (27¢/20)  asl(sin (27t/Ts) < 0) + bs1(sin (27t/Ts) > 0)
Slow sine + Ramp 1.5 sin (271¢/250) mod (t/Tramp,)

Table E.10: Simulation patterns for f; and g;. The moment of break Ty eqk,, the period
of steps T, the ramp period T}.qmyp,, the size of the break and steps are different between groups
and are randomly chosen: Tpeqr, ~ U([0,71),Ts ~ U([100,250]), Tramp, ~ U([100,200]),as ~
U([0,0.2]),bs ~ U([1.5,2]),al = 1.5as,bs = 1.5bg, for s = 1,...,S. The parameters for the AR(1)
processes are the same as for the main DGP.

Furthermore, we analyze the filtering of the common and group-specific factors sepa-
rately. We consider different number of groups S and different values of the parameters
for the group specific factors, 1,. To assess the factors’ estimates we regress the simulated
factors on the estimated ones and compute the R? of this regression. For simplicity, in these
experiments, we set 1, = - -+ = g meaning that the group-specific factors have the same
persistency. The results for the common factor are provided in Figure [E.4 We notice that
the R? for the common factor is high when the number of groups S is large. In this case,
the value of the parameter 1, does not have any effect on the R?. In contrast, when the
number of groups S is small the value of 1, plays a role. Particularly, the R? increases with

a decrease in 1,. This confirms that when the conditional expectation of the group-specific
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factor is negligible the predicted common factor is closer to the true one which is in line
with our discussion in Section 2.5, The results for the group-specific factor reveal that
the R? increases with the increase in 1, and number of groups S (Figure . The latter
can be explained by the fact that when S is large the prediction for the common factors is
more accurate which has a consequent effect on the estimation of the group-specific factors.
Overall, if the interest is in predicting accurately common and group-specific factors rather

than the conditional group mean, the number of groups S should be large.
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Figure E.4: Kernel density plot of the R? of the regression of the simulated
common factor ft on the estimated factor ft for different number of groups S
and different values of the parameter ¢,. The results are based on 1000 Monte Carlo
simulations for time series from DGP (4]) with 7" = 300 and N5 = 10.

Finally, in Figure [E.6] we present additional results for the out-of-sample analysis for
the setup outlined in Section 3.3} We find that the range of the MSEs is smaller for our
model for the one-step-ahead forecasts and the difference becomes smaller once the forecast

horizon increases.
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(a) S=2
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—-= ys=07
ys=0.9
= -~
/l ™
7 \

Figure E.5: Kernel density of the R? of the regression of g/ on §;. The results for
other group-specific factors are the same and are omitted here. For further details, we refer to

Figure [E.4]
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Figure E.6: Average MSE of the observation driven, PC1, PC2, and PC3 models
for the different forecast horizons and different sizes of the rolling windows. For
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further explanations, we refer to Table
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