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B Proofs of Remaining Results in the Main Paper

B.1 Two propositions on SE and the existence of moments

We start with the two propositions used in the proof of Propositions 3.1 and 3.3. These proposi-
tions encompass the score-driven model and are written for the case of general random sequences
{z(0, %) }+en taking values in X C R, where x4(0, Z) is generated by a stochastic recurrence equa-
tion of the form

2141(0,7) = ¢(24(0,7),v4,0), (B.1)

where T € X is a fixed initialization value at t =1, ¢ : X X V x © — X is a continuous map, X is
a convex set X C X* C R, and 6 € O is a static parameter vector. For the results that follow we
define the supremum

k(e) . “Z’(l’wtﬁ) — ¢(x,7vt70)’k

Ty = sup PP
(z,2")€X* x X* 1w |LL’ - |

. k>0

Moreover, for random sequences {z1+}iecz and {24}+cz, we say that 14 converges exponentially
fast almost surely (e.a.s.) to xa; if there exists a constant ¢ > 1 such that ¢! |1, — 2| “3 0; see
also Straumann and Mikosch (2006) (hereafter referred to as SMO06).

Proposition TA.1. For every 0 € ©, let {v }icz be an i.i.d. sequence and assume 3 & € X such
that

(Z) E10g+ |¢(i'a,0170) - :f’ < o0
(ii) E logri(6) < 0.

Then {x+(0,Z) }ien converges e.a.s. to a unique SE solution {x(0)}iez for every 6 € © ast — oo.
If furthermore, for every @ € © A n > 0 such that

(7’”) ”d)(jvvlve)nn < 005
(iv) Er}(0) < 1;
then E|z:(0)]" < oo V 0 € O.

Proof of Proposition TA.1. Step 1, SE: The assumption that {v;}ez is i.i.d. and therefore SE
V 0 € O together with the continuity of ¢ on X xV x © (and resulting measurability w.r.t. the Borel
o-algebra) implies that {¢; := ¢(-, v, 0) }1ez is SE for every 8 € © by Krengel (1985, Proposition
4.3). Condition C1 in Bougerol (1993, Theorem 3.1) is immediately implied by assumption (7)
for every 8 € ©. Condition C2 in Bougerol (1993, Theorem 3.1) is implied, for every 6 € ©, by
condition (ii) since for every 8 € ©,

0)— v, 0
Elog Sup |¢)(2U,Ut, ) QZ)/(Z' y Ut )|
(z,2")€X X Xz ’x - ‘

=Elogr;(6) < 0.

Also due to the stationarity of {v;} we have Elogr;(0) = Elogri(6). As a result, for every
0 € O, {x:(0,7)}en converges to an SE solution {x(6)}icz. Uniqueness and e.a.s. convergence
are obtained by Straumann and Mikosch (2006, Theorem 2.8).
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Step 2, moment bounds: For n > 1 the moment bounds are obtained by first noting that |z+(0)|
can be bounded as follows:

2(0)] = |p(21-1(0), vi-1,0)]

< p(24-1(0,7),v1-1,0) — (T, v1-1,0)| + [9(Z, vi—1, 0)]

< lroa0) - o PRI EE I o)

< 11(8) [we-1(6) — 7|+ [$(, vi-1, 8)]

< 1 1(0) [we-1(0)] + i1 (8) |7] + |6(7, ve-1,0)]

so if we keep unfolding this recursion backwards k times, we obtain

k

2(O) < | []ri(0) ] lzi-r()| (B.2)
j=1

-1

+Z Hn _0) | (16(z, vi—:,0)] +r1_i(8) |2]) -

=1 \j=1

Because for every 8 € ©, {r}(0)}icz is an i.i.d. (and therefore SE) sequence of nonnegative random
variables with Elogri(8) < 0 (by condition (7)), it follows from Lemma 2.4 of Straumann and
Mikosch (2006) that for every ¢:

k
Hrt] U0, ask—oo.

Using this result and the fact that {|z;_;(0)|}xez is SE by the first part of this proposition and
Krengel (1985, Proposition 4.3), it now follows that for large enough k, we have that the first term
of (B.2) is smaller than 1 almost surely. So there exists a large k such that

k
[[ris0) ) lew@)l <1, as. (B.3)

Now use that for every 6 € © we have E|z;(0)|" < oo if and only if ||z4(0)]|,, < co. For now we

consider the case where n > 1, meaning that we can use the sub-additivity of || - ||,,, because it is
a norm. By combining (B.2) and (B.3) for some large enough & and by taking the norm || - ||,,, we
obtain

k i—1 k i1

[ze(O)|ln < 1+Z Hrtl—j(e) |p(z, v, 0)| +Z Hrtl—j(e) ri_i(0) |Z|
- j=1 i=1 || \j=1
n n
k i—1
= 1+ | [I@E 007" | 6(z, ve-i,0)]ln
i=1 \j=1

i—1
+Z [T (0) " | (Bryi(6))"/" ||
_ j=1

k
= 1+ (1000, 0) |l + & [2]) D ()
=1
N | PN RN,

1—¢,
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where &, := (Er(0))"/" = (Er}(0))"/™ < 1 by assumption (i) and the stationarity of {v;}. The
first inequality follows from the sub-additivity of the norm and the first equality holds by the serial
independence of the elements of the sequence {v;}, which also implies the serial independence of
{r}}. The final quantity is finite because ||¢(Z, v, )|, < oo by condition (7ii). This finishes the
proof of E|z:(0)|" < co for n > 1

For 0 < n < 1, the function || - |, is only a pseudo-norm as it is not sub-additive. However, the
proof still follows by instead using the metric || - || := (|| - ||»)"™ which is sub-additive; see the C),
inequality in Loeve (1977). (]

Proposition TA.1 not only establishes the convergence to a unique SE solution, but also estab-
lishes the existence of unconditional moments. The latter property is key to proving the consistency
and asymptotic normality of the MLE in Section 4 of the paper. To establish convergence to an SE
solution, condition (7i) requires the stochastic recurrence equation to be contracting on average.
For the subsequent existence of moments, the contraction condition (7v), together with the moment
bound in (%), are sufficient. Note that conditions (i)—(ii) are implied by (iii)—(iv).

Following SM06, we also note that conditions (i) and (i) in Proposition TA.1 provide us with
an almost sure representation of z4(6, %) as a measurable function of {vs}s<¢—1. Let o denote the
composition of maps, e.g.,

¢('7vt—1a0) © ¢('7’Ut—270) = ¢( ¢('7Ut—279) ; Ut—1 0 )
Then we have the following result.

Remark TA.2. Let conditions (i) and (ii) of Proposition TA.1 hold. Then z;(0) admits the
following a.s. representation for every 8 € ©

.’L’t(e) = Tll{& ¢(7 Vt—1, 0) ° ¢(7 V-2, 0) ©...0 ¢(7 Ut—r, 0)7
and x4(0) is measurable with respect to the o-algebra generated by {vs}s<t—1.

Proposition TA.3 deals with sequences {z(0, T) };en that, for a given initialization z € X, are
generated by
xt—l—l(ev'@) = ¢(-/Et<07{z)7vt70) v (Ovt) €O x N7

where ¢ : X X V x © — X is continuous. We have the following proposition.

Proposition TA.3. Let © be compact, {vi}icz be stationary and ergodic (SE) and assume there
exists an T € X, such that

(i) Elog™ supgee |¢(Z, vt, 0) — | < 00;
(ii) Elogsupgee r1(0) < 0.

Then {x(0,Z)}1en converges e.a.s. to a unique SE solution {x(0)}iez uniformly on © ast — oco.
If furthermore 3 n > 0 such that

(ii) ||6(@,ve, )7 < oo
(iv) supgeg |P(z,v,0) — d(a’,v,0)| < |z —2a| V (z,2',v) € X x X xV with x # '

then Esupgeg |24(0)]" < 0.
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The contraction condition (iv) in Proposition TA.3 is stricter than the similar condition (iv)
in Proposition TA.1. Rather than only requiring the contraction property to hold in expectation,
condition (iv) in Proposition TA.3 holds for all v € V.

Again, we note that conditions (i) and (7i) in Proposition TA.3 provide us with an almost sure
representation of x4(8).

Remark TA.4. Let conditions (i) and (i) of Proposition TA.3 hold. Then z,(0) admits the
following a.s. representation for every 8 € ©

:Et(e):’r‘h_{&gb('?vtfl)a)ogs( Vt—2, ) O(]S( Ut—r, )

and z+(0) is measurable with respect to the o-algebra generated by {vs}s<¢—1.

Proof of Proposition TA.3. Step 0, additional notation: Following Straumann and Mikosch (2006,
Proposition 3.12), the uniform convergence of the process supgcg |7+(8,Z) —2:(8)| “%™ 0 is obtained
by appealing to Bougerol (1993, Theorem 3.1) using sequences of random functions {x;(, Z) }ten
rather than sequences of real numbers. This change is subtle in the notation, but important. We
refer to SMO6 for details.

The elements z;(-,Z) are random functions that take values in the separable Banach space
Xo C (C(0,X), - 9), where [|lz:()[} = (Esupgee [2:(6)*)"/" and [lz:(-)[|® = supgee |2:(6)|-

The functions z(-, &) are generated by

I’t(',f):(ﬁ(l‘t 1( )’Ut 1,)Vt€{2,3,...},

with starting function z1(0,0,%) = T V 6 € ©, and where {¢*(-, v, -) }+ez is a sequence of stochastic
recurrence equations ¢* : C(©) x © — C(0) V t as in Straumann and Mikosch (2006, Proposition
3.12). Note the subtle but important difference between ¢*(-,v,-) : C(O©) x ©® — C(©) and
d(- v, ) 1 X x © = X as alluded to earlier.

Step 1, SE: With the above notation in place, we now first prove the SE part of the proposition.
The assumption that {v;}icz is SE together with the continuity of ¢ on X x V x © implies that
{¢*(-,vt, ) hez is SE. Condition C1 in Bougerol (1993, Theorem 3.1) is now implied directly by
condition (i), since there exists a function zg € C(O) with zg(0) = z V 8 € O that satisfies
Elog* [[¢*(Ze(-), vi,-) — Ze(-)|® = Elog™ supgee |¢(z, v, 8) — 7| < 0.
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Condition C2 in Bougerol (1993, Theorem 3.1) is directly implied by condition (%), since
6 @0 (), v1,) — " @ (), ves M

Elog sup

|Ze—4|©>0 [ze () — 26 ()[1®
Elog sup Sup@E@‘qb(j@( ),Ut, ) (g@(a),vt,0)| _
|20 —24||©>0 [Ze(-) — 2 ()l

E log sup sup |¢(fi® (0)7_Ut7 0) —_¢($@ (0), Vt, 0)| _

26—, [|© >0 0O [Ze(-) — 76 ()||®
T (]
Elog sup sup ’qb(x@(e)’i”t’ 6) 7‘?(17@(5)7% 0)| <
|Zo—74©>0  0€O|ze(0)#T, () 1Zo(-) — 25 ()|
Elog sup sup ‘¢(j@(9)7 (%2 9) — (Z)(Zfb(g), (I 9)|
|Fo—3L]/©>0 B€O|Ze ()2, (6) |Z6(0) — T (0)|
76 (0) — T6(0)]
1Ze () — T ()II®
7 _ =/
Elog < sup sup |¢($@(9),7vt, 2) ?/(xe(e)a Vg, 0)|) y
|l7o—76]0>0 6€6|z6(8)£74 (6) 70(0) — 76 (0)]

Z6(0) — 26(0)]
sup sup — <
|zo—24|©>0 0O er()—%(')ﬂe)

) — 0
Elog sup sup sup |¢($,'Ut, ) d)(fl: , Uty )‘ _

|te—74||®>0 6€0 z#a’ |z — |
0) — ! 0
Elogsup sup o, 0) ¢/($ ALY Elogsupr;(0) =
0cO x#z’ ‘l‘ - | 0c6

E log sup 1 () < 0.
6co
As a result, {x¢(-,Z)}ten converges to an SE solution {z¢(-)}sez in || - |®-norm. Uniqueness and

e.a.s. convergence is obtained in Straumann and Mikosch (2006, Theorem 2.8), such that supgce
|24(0,7) — 24(8)] “57 0.

Step 2, moment bounds: We use a similar argument as in the proof of Proposition TA.1. First
consider n > 1. Using condition (7v.a), define ¢ < 1 such that supgcg |¢(z,v,0) — (2, v,0)] <

¢|z — a'| for all (x,2/,v). and note that we can bound ||z(-)||® as follows:

[EXOl 6" (2e-1(-), ve-1,)|®

< “¢*($t—1(‘)7vt—17 ) - ¢(.f‘,vt_1, )H@ + H(Zs(f"vt—h )”®
< Sup $(2¢-1(0),v¢-1,0) — ¢(Z,vi—1,0)| + ||p(Z, vr—1,)[|°
€0
< ¢ sup |2-1(0) — 2| + | ¢(Z, vi-1, )|
€0
< e e (N 4+ |2 + @, v, )|

Unfolding this recursion k& steps backwards, leads to

k
leI® < @ - laes(I® + 3@ (6@ ve-s, )° +2 Ja)
i=1
< 14 Y@ (16@ ve-i, )| 42 lal), (B4)
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where the final inequality holds for some large enough k, because (€)¥ goes to zero at an expo-
nential rate as k — oo and because {||z;_1(-)||®}xez is SE by the first part of the proposition
and Krengel (1985, Proposition 4.3). Now use that sup, Esupgcg |2:(0,Z)|" < oo if and only if
sup, ||l2:(8,7)]| < co. Consider taking the norm || - ||,, of both sides of the inequality (B.4) for
some large enough k. Then

k
OIS < 14+ 3@ (o v, S +2 )
1=1
oy e e elal

1—¢ ’

where the first inequality holds by the subadditivity of || - ||,, for n > 1, the second inequality holds
because ¢ < 1 and ||¢(Z,vi—i, )9 = [|(Z, v, )| for every i because {v;} is SE and where the

final expression is finite because ||¢(Z, vt,-)[|© < oo by condition (iii). This establishes the result

forn > 1.
When 0 < n < 1, then | - ||,, is not sub-additive. Just as in the proof of Proposition TA.1, in
this case the metric || - || := (|| - ||n)"™ can be used. This works because || - || is sub-additive (see

the C,, inequality in Loeve (1977)). (]

B.2 Proofs of remaining results in the main paper

Proof of Theorem /.3. Recall that ft denotes the initialized ft( fl) Assumption 4.2 implies that

(r(0, f1) is a.s. continuous (a.s.c.) in @ € © through contlnulty of each £,(0, f1) = U(fiy,0),
ensured in turn by the continuous differentiability of p, g, § and the continuity of S;, the implied
a.s.c. of s(fy,y; ) = S; - (Ope/df + dlogg'/df) in (fi; \) and the resulting continuity of f; in 0 as
a composition of ¢ continuous maps. The compactness of @ implies by Weierstrass’ theorem that
the arg max set is non-empty a.s. and hence that 01 exists a.s. VT € N. Similarly, Assumption 4.2
implies that ¢7(0, f1) = C({yediy, {fi}l,, 6) is continuous in y; V @ € © and hence measurable
w.r.t. a Borel o-algebra. The measurability of 67 follows from White (1994, Theorem 2.11) or
Gallant and White (1988, Lemma 2.1, Theorem 2.2). ]

The following two lemmas support the proof of Theorem 4.6.
Lemma TA.5. Under the conditions of Theorem .6, supgce |¢1(0, fl) —(7(0)] %3 0.

Proof. Note that instead of considering the average log likelihood (7 (0, fl) it is sufficient to show
that supgee [6:(8, f1)—L:(0)] “5™ 0, where £y(-, f1) = £(f:(-, f1), vs, -) is the individual log likelihood.
The expression for the likelihood in (2.5) and the differentiability conditions in Assumption 4.2
ensure that £y (-, fl) is continuous in ( i, y¢). All the assumptions of Proposition 3.3 relevant for the
process { f¢} hold as well. To see this, note that

e the compactness of O is imposed in Assumption 4.1;
e the moment bound E|y;|™ < oo is ensured in the statement of Theorem 4.6;

e the differentiability s € C2%2(F x Y x A) is implied by § € CZO(F x V), p e CED (U x A),
and S € C32)(F x A));

e and finally, conditions (i)-(v) in Proposition 3.3 are ensured by Assumption 4.4.
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€.a.s.

As a result, there exists a unique SE sequence {fi}icz such that supgeg \fi — fi] “S 0 VS e F.
Because /; is differentiable in f; by assumption, the mean value theorem implies that

sup [64(6, f1) — £:(8)| < sup sup [9L(f, ys, \)/Of| - sup | f — fil
0cO 0co f 0cO

and therefore we obtain the required result supgeg |£:(6, f1) — £¢(8)] “=* 0 by Lemma 2.1 in SM06

e.a.s.

since supgce ]ft — ft]l =" 0 by Proposition 3.3 and supgeg supy |V¢| is SE by the continuity of
the score which follows from Assumption 4.2, and has a logarithmic moment because ny > 0 by
Assumption 4.5.

Lemma TA.6. Under the conditions of Theorem J.6, supgeg |¢1(0) — Loo(8)| “3 0.

Proof. We apply the ergodic theorem for separable Banach spaces of Rao (1962) (see also Strau-
mann and Mikosch (2006, Theorem 2.7)) to the sequence {¢r(-)} with elements taking values
in C(0), so that supgee [(7(0) — loo(0)] “3 0, where £,,(0) = E{(0) ¥V 6 € ©. The ULLN
supgeo [07(0) — B4 (0)] “3 0 as T — oo follows, under a moment bound Esupgeg |4:(0)] < oo, by
the SE nature of {{7}¢cz, which is implied by continuity of ¢ on the SE sequence {(fi,y:)}ez
and Proposition 4.3 in Krengel (1985). Moment bound Esupgcg |f:(8)] < oo is ensured by
Esupgeg | fi|™f < 00, E|y|™ < oo, and the fact that Assumption 4.5 implies ny > 1. We stress that
Assumption 4.5 can be checked via low-level conditions on n, and ny via the moment preserving
maps as laid out in Technical Appendix G. m

The following lemmas support the proof of Theorem 4.10.

Lemma TA.7. Under the conditions of Theorem 4.10,

Qoo( ) QOO 00 // [/py y|f7)‘0) ((y‘tcf :\)) d detft(f’ fﬂ 9019)a
for all (69,0) € © x © : 0 # 0.

Proof. Using the observation-driven dynamic structure of the score-driven model, we can substi-
tute the conditioning on {ys}s<;—1 by the conditioning on f;, where f; is generated through the
generalized autoregressive score recursion. Under the present conditions, the (non-initialized) limit
process { ft(H)} +cz, 18 a measurable function of {ys}s<¢—1, and hence SE by Krengel’s theorem for
any 0 € 0; see also SM06. By substituting the conditioning, we obtain

Qe (6) — Qo (60) = Elog py (41| £1(6); A)

— Elogpy (yt‘ft(90)§)\0) (B.5)

///log pyg;y’\]{)\ oulfong) Fo s @ . 100, 0),

V (60,0) € ©x O : 0+ 8, with P, . 7 (y, f, f;00,8) denoting the cdf of (i, f¢(80), fi(0)). Define
the bivariate cdf Py, 7 (f, f:60,0) for the pair (fi(0y), fi(0)). Note that this bivariate cdf depends
on O through the recursion defining ft(ﬂ), and on @y through y;—1 and f;(6y). Also note that for
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any (00,0) € © x O this cdf does not depend on the initialization fl because, under the present
conditions, the limit criterion is a function of the unique limit SE process { ft(B)} +ez» and not of

the initialized process {ft(e, fl)}teN; see the proof of Theorem 4.6.
We re-write the normalized limit criterion function Qo0(0) — Quo(Bp) by factorizing the joint
distribution P, ft(y, fyf;00,0) as

Pyt’ftft(y,f,f;ao,e)_ ye|fr,ft (y|f faOOa ) Pftft(f,f;@o,e)
’yt‘ft(y‘fa A0) : ft7f;(fﬂf;0070)7

where the second equality holds because under the axiom of correct specification, and conditional
on f;(8p), observed data y; does not depend on f,(0) V (8¢, 0) € © x © : @ # ). We also note that
the conditional distribution P, s, (y[f, Ao) has a density p,(y|f, Ao) defined in equation (2.1). The
existence of this density follows because g(f,-) is a diffeomorphism g(f,-) € D(U) for every f € F,
i.e., it is continuously differentiable and uniformly invertible with differentiable inverse.

We can now re-write Qoo(0) — Qoo (60) as

QOO(GO)

A ~
/// ]Zy;‘;/\ dPyt|ft(y|f7 Ao) - detjf-t(ﬂf;gO’e) _

//[/ y’g’)\) dPyt|ft(y’f7)\0) det7ﬁ(f7f;9079):

| inrivs 2t

for all (68p,0) € © x © : 0 # 0. ]

det,ft(f’ f~7 0070)7

Lemma TA.8. Under the conditions of Theorem /.10, for every @ # O¢ there exists a set YFF C
Y x F x F with positive probability mass and with orthogonal projections YE C Y x F, FF C Fx F,
ete., for which (i)-(ii) hold if A # o, and for which (i)-(iii) hold if X = Ao, where

(1) py(ylf; A0) >0V (y, f) € YF;
(ii) if (f. 0) # (f: %), then py(y|: N) # py(ulf: 20) ¥ (., f. f) € YEF;
(iii) if A= X and (w,a, B) # (wo, a0, Bo), then f # f for every (f, f) € FF

Proof.

Part (i): The first result follows by noting that under the correct specification axiom, the conditional
density py(y|f, Ao) is implicitly defined by y:(60) = g(f,ut), ur ~ pu(us; Ao). Note that g(f,-) is a
diffeomorphism g(f,-) € D(U) for every f € F, and hence an open map, i.e., g 1(f,Y) € T(Uy,)
for every Y € T(),) where T(A) denotes a topology on the set A. Therefore, since p,(u;\) >
0V (u,A) € U x A for some open set U C U, which exists by the assumption that u; has a density
with respect to Lebesgue measure. As a result, we obtain that there exists an open set Y € T(Y,)
such that py(y[f, o) > 0V (y, f) € Y x Fy, namely the image of any open set U C U under g(f,").
Next, YFF can be constructed by taking the union of Y over FF for any FF of positive measure for
X # Ao, and for a set FF satisfying (iii) below if A = Xo.
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Part (it): The second result is implied directly by the assumption that py,(y|f,A) = py(y|f', )
almost everywhere in Y for some open set Y C ) if and only if f = f/ and A = \. The existence
of an open set Y was already argued under (i) above.

Part (iii): The assumptions that o # 0 V6 € © (including ag # 0); and that ds(f,y; \)/0y # 0
almost everywhere in Y; for every (f,\) € F x A; together with the fact that w; has a density,
together ensure that both F' and F can be chosen as open subsets, i.e., to have multiple different
values.

The result is now obtained by a proof by contradiction: if A = Ag A (w,
there is no set YFF with positive probability mass satisfying f #* f v (f, f
that (w,a, B) = (wo, @, Bo), which is a contradiction.

The proof goes as follows. Let (60,0) € © x © be a pair satisfying A = M A (w, ., 8) #

then

a, B) # (wo, a, Bo), but
) € FF, then it must be

(wo, g, Bo). If there is no YFF of positive probability mass with f # f for all (f,f) € IF,

it must be that f = f except for a set of zero probability. This implies that ft( ) 2 £,(0) for
arbitrary ¢. Putting this into the recurrence equation for both f;(8) and f;(8) and subtracting
the two, we obtain

0= ¢(ft(0), e, 0) — O(f:(6), ye, O0) (B.6)
= (w—wo) + (B = Bo) ft(60) + (o — ag)s(f:(00), y(00), o).

Note that s(f;(60), yt, Ao) is not constant in y; € Y where Y is an open set, because « #0V 0 € ©
and 9s(f,y,\)/0y # 0 for every A € A and almost every (y, f) € Vs X Fs. As a result, we must
have o = o for (B.6) to hold.

Given @ = ag A X = A, and given F' can be chosen as an open set due to the fact that u; has a
density and g > 0, it follows that 5 = By. Given the result for o and 3, the result w = wg follows
directly from (B.6), which establishes the contradiction and the result. (]
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C Derivative Expressions for the Main Example

In this part, we provide some of the technical details of the main example of the paper, including
the detailed expressions for of the required derivatives.
Let {u;}ten be i.d.d. Student’s ¢t distributed noise with A degrees of freedom. Consider the model

Yy = ftl/zut as in Creal et al. (2011, 2013). Following Creal et al. (2011, 2013), we scale the score
by (a time-invariant multiple of) the conditional Fisher information, which in this case amounts to
setting S(fi; \) = 2f2.
The following set of derivatives is straightforward (though tedious) to compute, either by hand
or by a symbolic computation package such as Maple or Mathematica.
r (%)
Py =log — 7=
r (%) VA
log g; = —3 log f;
v, = AR/
L+y7 /(A fe) 2
L+ Ny? F
=Ty b
L+ 7 /(Afi)
(LA D/ O0)

1 yt2
_ I+ D)log (14 2L ),

St

83,5 8ft =
/ (1+ 3/ (Mf)?
AP %
Sut = (1—1-)\1ut2 — 1) It
1+ 27t u?
8SU,t/aft = (1——::)\_13,62 — 1.
2 2 2 2 2
Ds O\ = Yi _ (14+ N)y; _ ((yt /1) — (y; /ft)) "
/ (A +vi/f) (>‘+yt2/ft)2 (>‘+y152/ft)2 Ji
9%s, /0N = _2((2/1:2/ft)2 - (th/ft)) .
()‘ +yt2/ft)3 ’
25, /0D f, = 1L N W) 20+ N/ f)
M2/ f)?  +ulh) A+ ulh)
e o = 2D 1
S IV Y7
838,5/8)\3 _ 6((yt2/ft)2 — (yti/ft)) s
()‘+y152/ft)
835, /ON2Df, = 2(y7/fu)* (N + 3 — 2(v7/ f1))
()‘ +1/152/ft)4 7
2(y2/f)2(A2 42X — (1 +20)(42/ ) 1
O350/ ONDF2 = L
R ()‘+yt2/ft)4 It
sy j0p8 = SLFA /D) 1

(1+2/0f))

TC.pl0



We obtain directly that

e |si| <supy, |s¢| < c1-|fi| for some constant c1, and thus ns < ny.
e sup,, |0s:/OA| < c1 - |fi| and thus n) < ny.

e sup,, |0s¢/0fi| < 1 and thus al — oo.

e sup,, 025, /0f,0M| < ¢1 and thus 7l* — co.

® sup,, 0251 /02 < e1f; ! < ¢ /w and thus i = oo,

e sup,, [0%s;/ON?| < c1 f; and thus n)* < ny.

e sup,, |0%s,/0f}| < c1f7% < ¢1/w? and thus alll =

e sup,, |0%s,/ON*df;| < ¢1 and thus ™ = 0.

e sup,, |03, /ONOSfE| < c1fi ' < er/w and thus !l 5 0.

|log | < ¢1 + ol f¢|? for arbitrarily small positive & given f; > w, and thus Nogg' < Np /0.

pt| < e1+e2log|1+y2/(Aw)| < es+caly:|® for arbitrarily small positive &, and thus n; < n,/d.
o |V <sup,, [Vi| < efit §f{ < ¢g/w, and thus ny — oo.

For asymptotic normality, a further sets of moments and derivatives need to be established. We
have

A [ 210, DGO+ L (0 AT/ ()
i (mlog F&ﬂ)ﬁ) ti 2/ (Mf) — g log (L+y7/(AMf),

(/A2 (24 (1= N2/ (M)

A1

by = -9 2 ’

(1+52/000)

A1t f Wi f) (1= 2/ft)

b 2 )

(A +92/5)’
oy SR ) (U =y 1)
by - 3 )
(r+u2/1:)
BV lft_2(yt2/ft) (2A =3y / fe — v/ 1})
pt - 92 3 9
<)‘+yt2/ft)
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A (A —2\yi/ fi — y?/ff)

OV, /0f = : |
(>‘ + y?/ft)
ov,jon = 2 WH/F) (L vt/ f)
<>‘ + th/ft)
VL0 f% = A ()\2 =3y} / fE - 3)\Zyt2/ft - y?/ff’) |
(A + y?/ft)
92V, /0 fON = 26 (1) (22 - 332 g fi = i/ 17) |
</\ + y?/ft)
OV, /0N = fe w2/ 1) (1= yf/ft) |
(A + th/ft)

From these moments and derivatives, we obtain

o |p}| < e1 + ealog(l +y:/(Aw)), such that n]ﬁ} < n, /6 for arbitrarily small positive 9.

[P < c1, such that nj* — oo,

|p?f| < letil < ¢1/w, such that ﬁ%‘f — 00.

M| < et < e1/w, such that ﬁg‘)‘f 5 00.

5277| < e1f? < er w2, such that 7)) — oo

0V/0f| < let_Q < ¢1/w?, such that ﬁfv — 00.

|0V /0N < c1f; < e1/w, such that Ag, — co.

‘32V/6f2‘ < let_g < C1/w3, such that ﬁfvf — 0.

02V /0 fOA| < let_2 < ¢1/w?, such that ﬁéf — 0.

102V /0X2| < e1f; ' < e1/w, such that A} — oc.

TC.pl12



D Likelihood Derivatives of Time-Varying Parameter

D.1 Explicit expressions for the likelihood and its derivatives

We assume that A € R. Similar derivations hold for vector valued A € R% . The likelihood function
of the score-driven model is given by

(r(0, f1) =

Note that we have defined the score V; as 9/( ft, Yy N) /O fr =

the likelihood is given by

N[ =
N
Nz

(D.1)

T
Z ft,yt,

1ogpu(g‘1(ft,yt) ; A) + log

W
Il
—_

ag_l (ft7 yt)
Jy

M| =
B

i
N

Nl =
E

_ g
log pu(ge; A) + log =
(965 \) Dy

i
I\

NI =
E

Pt + log g;.

W
Il
—

O(pt +log g;)/0fi. The derivative of

A T
~(0:1) olr (0, f 1 ~ 2(0:1)
lr(0.f17) = Tf,%,l)zTZEQM,fl ) (D.2)
t=1
1 ft . Om L of, Opt
_T;0A+60 T:180 Vet e
with 95 91
* Pt Og gt £(0:1)
= _ = = 0
R R A = (fr, 041/08).
and
. . . . AT ~ 9T
o _[0fi 0f 0k 0 o [y o o
90  |0w da 95 x| 06 x| -
N 2(1
Note that 0f;/00 = fi ). The second derivative of the log-likelihood function is given by
A(0: 9%0r(0, 1)
o 0, (0:2) _ T\Y, D.3
r(0.F1 ) = ot (D.3)
U (LB e Oh 04 0F | OF 047 O 0 O
T4 \ogoeT ' 00 9fi 00T 90 99T  900f, 00T = 96067
T ~
1 O fi ofe df ofy ofy 0Py
- — CAF+ B 2L enT o - :
T; (aeaaT a0 90m B a0 O Tl T+ Gg0gT
LS (P g, 0508 0V 0/ 0V: | OV, Of O
T\ 0600 00 99" Of  00090" 00 90T 0000
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where

~(0:2 ~ ~ ~
£ = (fi.0h/08, *fi/0000") .
. 0%p  O%logg, OV,
Bt - 2 + 2 - )
of; dfi df
- o T HA*
x 52 _ v, 11 _ t
c; = [ooo0 Z&] =[oo00 g =
i 82ft 82ft ant 82ft T
Ow? Owda  wdB  OwOX
82]3 02 f 9% fi 02 f¢ 02 fi
t _ Bo;@w 82a? Bo;@ﬁ 80248)\
T 02f 92f 25 9Af ’
9006 aga} aﬁa; aﬁgt aga}
% fi 0% fi %fy  fi
| 930w 9rda A0 02
0 0 O 0
#p |0 00 0
0000 00 0 O ’
2,
L0 00 %&

~ 2(2
where 02 f,/0000" = f,f !

D.2 Expressions for the derivative processes of f;

We have 0 = (w, a, 8, \) € O and write s(f;, v¢; A)/00; as the derivative of the scaled score w.r.t. A
only, not accounting for the dependence of f; on 6. Differentiating the transition equation of the
score-driven model, we obtain

Oft+1 Ow Ja st Of: dsy 0B O fs
p— _— D.4
06, o0, " 90,% T a7, 00, T %00, T 90,” T P50, (D-4)
4 9
= Aj,t + 870Z Bt,
with
1 1 1 1 Oow O dsy 0P
AY = AP(f,0) = (AV)(f.0)..... AL (f.0) = 50 7% +aa—6f + 5910
88t
B, = By(f;,0) =a—2L +8.
t «(f,0) aaft—i-ﬁ
For the second derivative process, we obtain a recursion
Phoy _ OAY A 0f 0/ 0B, O£ 0B O Ph_po
50007 907 | 9fi 997 ' 090 99T = 90 Of, 997 ' 9000 ' '
AQ 4 % f B,
00007 T
with
AP = OAD | 94D o\ 010B, | 0B, 0f 01 D)
! 00" ofr 06" 00 90" = Of, 06 90T '
_ (Oa 0s 0s; O« 0%s, Oa 08y 0%sy BN Oft
a <%a¢7 T 90 907 +a8080T) <%67t %805, T %)W
%<% do 9%, 85> aa%t% of,
00 \of, 00"  of,00" 90" of2 00 90"
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E Further Derivations for Example of Section 5

In this appendix we show that Assumptions 4.8 and 4.9 which are needed for consistency of the
MLE under correct specification hold for the example discussed in Section 5 (a score-driven location
model with Student’s t-distributed innovations).

It is straightforward to check that condition (i), (i) and (iii) of Assumption 4.8 are satisfied
in this setting. Also, by the C,-inequality of Loeve (1977, p.157) we have that n, = min{n ., n,}.
Thus, ny > 0, because f;* can be set arbitrarily high by Proposition 3.1 under the conditions of
Assumption 4.9 and 0 < n, < infg, v.

Finally, consider the conditions of Assumption 4.9. Defining the updating recursion of the
time-varying parameter in terms of u; and ft“ as in equation (3.1), we obtain

ffﬂ =w+a(l+ A_le_Q"ut)_lut + ﬁft“ ,

using that s,; = (1 + A" te 2*u?)u;. That condition (i) of Assumption 4.9 holds now follows
immediately because s, is uniformly bounded. Also, because Js,./0f* = 0, condition (i) sim-
plifies to |5| < 1. The shaded area in Figure 1 represents (a part of) the («, 3)-pairs which meet
this restriction. Clearly, the parameter restriction |3| < 1 holds for all 8 € ©*. In other words,
the parameter restrictions we needed for filter invertibility are sufficient for the true time-varying
parameter to be SE. Assumption 4.9 also requires that for every (f,0) € Fs x ©,, the derivative
0s(f,y,\)/0y # 0 for almost every y € V,. For this model, it is not hard to see that this holds
for every v < oco. Lastly, we must have o # 0 for all 8 € O,. In other words, we can take some
compact O, C {0 € R%: |3 < 1,a # 0, > 0}. Notice that essentially Assumption 4.9 does not
impose any further restrictions on the parameter region, except for the restriction o # 0, which is
required for identification of the model.

Under correct specification, it now follows from Corollary 4.11 that for any compact parameter
set © C O N O,, where ©* and O, meet the requirements described above, the MLE Or is
consistent.
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F  Further Technical Lemmas and Proofs

This appendix contains a number of more technical results.

The following set of lemmas derives the bounds on the moments of the likelihood function based
on moments of the inputs. The results follow from the properties of moment preserving maps as
laid out in Technical Appendix G, but can also be proved directly.

Lemma TA.9. Esupgcg |#-(6, f1)|™ < oo where

m:min{nz)—)‘ , nvnfe}. (F.1)

ny +ng,

Proof. Using the explicit form of the first derivative of the likelihood in (D.2) in Technical Ap-
pendix D, the number of moments for the likelihood score is at least the minimum of the number
of moments for each of the terms making up the score, namely

%3 of
00’ 00 "

The number of moments for the first term is n;-}. Using a generalized Holder inequality, the second
term has moments nyny,/(nv + ny,). This yields the expression for m in equation (F.1). ]

Lemma TA.10. Esupgce |€7-(0, f)|™ < 0o where

b f

non

m = min ng)‘, "'V fo0 , fvnf" , fv Jo . (F.2)
nv+nfgg nv+nfg 2nv+nf6

Proof. The statement follows by Holder’s generalized inequality and from the explicit expression
for the second derivative of the likelihood in equation (D.3) in Technical Appendix D, we obtain
that the number of moments m is at least that of the minimum number of moments of the following
terms

0> fi Ofi fr OVi 0fi OV 9°py
00007 " 00 9T Bf;’ 20 9N’ 9000

Using generalized Holder inequalities, the number of moments for each of these terms are, respec-
tively,

f A
VN fee ngNfe nyNfe A
9 ) 9y *
nv+'flf99 2né+nf9 n%—}—nfe p
This makes up the expression for m in equation (F.2). [

The following lemmas support the proof of Theorem 4.15.

Lemma TA.11. Let the conditions of Theorem 4.15 hold. Then ¢, (00) is a sample average of a
sequence that is SE and NED of size —1 on a strongly mizing sequence of size —3§/(1 — ) for some
0> 2.
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Proof. By assumption, {y;}icz satisfies E|y;|™ < oo for some n, > 0 and is SE and NED of size
—1 on a strongly mixing process of size —0/(1 — §) for some § > 2. Assumption 4.4 and the

moment conditions of Assumption 4.12 ensure that the limit process { ft (90)}t€Z is both SE
(Propositions 3.3 and 3.5) and NED (Pé&tscher and Prucha (1997, Theorem 6.10)) of size —1 on the

strongly mixing process. The SE nature of the terms lZ’t (yt, f§0:1)(90); /\) that compose the score

. af,(0 *a
(%) = ;Q :th a];t

follows immediately by Krengel’s theorem (Krengel (1985)) and the continuity of the score on

the SE processes {y;}iez and {ft (90)}tez Finally, the NED nature of the terms in #,(6y) is
8pf

ensured by noting that Assumption 4.14 ensures that Ay is uniformly bounded and Aj and

are a.s. Lipschitz continuous, and hence that €’ is Lipschitz continuous on (y, f; (0: 1)(6’0)), Wthh
implies by Theorem 17.12 of Davidson (1994) or Theorem 6.15 of Potscher and Prucha (1997) that
{¢,(60)} is NED of size —1 on the mixing sequence. L]

Lemma TA.12. Under the conditions of Theorem /.15,

VT (80, ) = €:(80)| 250 as T — oo, (F.3)

Proof. We establish the a.s. convergence in (F.3) by showing the e.a.s. convergence of the individual
contributions of the score of the log likelihood

12, (80, ") = 2(80) ]| “%7 0 as T — oo,

This e.a.s. convergence follows from | fi — fe| “%7 0 and

(0:1)

172 00, 77 — £ B0))] 25 0,

as implied by Propositions 3.3 and 3.5 respectively, which hold because of Assumptions 4.4 and

~ ~(0:1
4.12. Now consider the expression of ¢}(6y, fg )) given in (D.2) to rewrite the difference under
investigation:

() op op
12,(60, £°0) — 7, (80)| = || £, (B0, £°) -V + 22— #1(8y) - v, — 22
06 09 (F.4)
( G f(OI) @—f(l)(O)- + %_% '
0> 1 £ Je Y0 090 00

where the quantities V; and 8’” are based on ft(eo, fl) and their analogues without hats are
based on f;(0p). Both terms can be shown to converge to zero e.a.s. by application of Lemma

2.1 in SMO06. The first term also requires the application of Lemma TA.14. We just argued that

Hft )(00, flo 1)) ftm)( 00)|| “%” 0, meaning that each of the elements converge, and it follows

from Proposition 3.5 that the limit sequence is SE and has a bounded moment, as ny, > 0. Also,
as V¢ is continuously differentiable in f;, it follows from the mean value theorem that

Vi Vo] <sup 780, f1) = f(B0)] “ 0 as 1 oo, (F.5)

Gf‘
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where it must be noted that V; only depends on f; and not on _fgl). The convergence follows from
Lemma 2.1 in SMO06 since {sup |0V:/0f|}ien is SE with a logarithmic moment, because ﬁé > 0,
and because the second factor vanishes e.a.s. Note that {V;}:cz is SE by the continuity of V; on
the SE sequence {y;, fi() }tez and Proposition 4.2 in Krengel (1985), and has a bounded moment
because ny > 0. So it follows from Lemma TA.14 that the first term of F.4 converges to zero e.a.s.

Next, we show that the second term of (F.4) vanishes e.a.s. by again invoking the mean value
theorem, which can be done because 9p;/OA is continuously differentiable in f:

32
»lons

where the convergence again follows from Lemma 2.1 in SMO6 because {sup; ‘(‘92]5/ ONOf }}teN is

|ft(007f1) fi(0)] 570 ast— oo,

ox  0A

‘ opr  Opt

SE with a logarithmic moment, as n— > 0. This finishes the proof. [

Lemma TA.13. Under the conditions of Theorem J.15, supgee ||¢4(8, f1 (0:2)

t — 00.

)= (O)] “5 0 as

Proof. The proof takes on a similar approach as the proof of Lemma TA.12. Again, instead of
considering the average log likelihood, we prove that the individual contributions of the Hessian of
the log likelihood vanish e.a.s.

(0:2)

sup 16,0, f1 ) —£/(0)].
Recall that ©2)

sup |y — FO7) %™ o,

0coO

by Proposition 3.3 and 3.5 under the maintained assumptions, where the limit sequences are SE
and have a bounded moment. - Now consider the expression of the second derivative of the log
likelihood given in (D.3) to rewrite this difference:

~ ~(0:2 ~ a(2) -
sup | (6, 7! )>—e:z<e>\3sup‘ft A

f0cO 0coO
1) A1), T OV, T OV,
+ su
eeg ft (ft ) 8f ft (f ) aft
A1) AV, ) OV
+ L S F.6
sup I 50T fi 50T (F.6)
[ove AT OV )T
Towlae V) e U
1 su O*py B 0?py
eeg 0000T 9000 ||’

2(0:2)
where all terms with hats are evaluated at elements of the initialized process {f; } and all terms
without hats are evaluated in the SE limit process { ftm)} Every term of (F.6) Vanishes e.a.s. We

S(LS

start by applying Corollary TA.16 to the first term, because we argued that supgcg || ft - ft H
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0, meaning that this convergence occurs for each element of fEQ), where the limit process is SE and
has a bounded log moment, as ny,, > 0. Also, that

sup @t—vt( “48 0 ast — oo,
f0cO

can be shown using similar steps as in the proof of Lemma TA.12 in (F.5). Because the sequence
{supgeco sups [0V/0f|}ien is SE and has a log moment, because ﬁé > 0. It was also argued
that {V;} is SE and has a bounded log moment uniformly over ©. Thus, Corollary TA.16 can be
applied.
For the second term of (F.6), we note that
aft aft 8ft aft eas

DI 2ah It 2L 0 ast—
bt |100; 90, 00, 06, wrT e

by Corollary TA.16, because we argued above that supgeg ||f§1) — f§1)|| % 0, where the limit
process is SE and has some bounded moment ny, > 0. The convergence to zero of the second term
of of (F.6) now follows from a second application of Corollary TA.16, because by the mean value
theorem we have

<supsup sup]ft fi] 570 ast— oo,

‘ 9°V
0co af2

where the convergence to zero follows from Lemma 2.1 in SM06 because {supgeg sup s [0°V/8 f?|}en

is SE and has a bounded log moment because ﬁéf > 0 by assumption. Thus, the result follows
from Corollary TA.16, because {OV;/0f }ien is SE and has a bounded log moment as ﬁé >0.
For the remaining three terms of (F.6) the convergence result follows by taking exactly the
same steps, so we omit a detailed derivation. Note that the necessary moment conditions that
correspond to the third and fourth term are ny > 0, ny, > 0, ﬁéf > (0 and né > 0 and for the fifth

f

term it is n’—\ > (. By assumption all these moment conditions hold.

Lemma TA.14. Let {%:(0,7)}ieny and {24(0, %) hen be sequences that converge e.a.s. to their SE
limits {x¢(0) }1ez and {x4(0)}iez, Tespectively, i.e.,

€.a.s.

|2:(0,7) — x:(0)] =0, 24(0,%) — 24(0)] “% 0 ast — oo.

Let Elog |x4(0)| < oo and Elog|z(0)] < co. Then

a

24(0,2)24(0,Z) — x4(0)24(0)] “5 0 ast — oo.
Proof. We have

|24(6,2)24(0, %) — 2(0)2:(8)|
= |2¢(0,)24(0,%) — (0, T)x¢(0) + T¢(0,T)x4(0) — 24(0)24(0)]
< 124(0, )] - [2:(6,2) — 24(0)] + [2:(6, ) — 24(6)] - [2¢(6)]
< |24(0,7) — 24(0) + 24(0)] - [24(0,7) — 24(0) |+



The first term goes to zero e.a.s. due to the e.a.s. convergence of {#4(0, z) }1en and {24(0, T) }1en to
{z¢(0) }1ez and {z+(0)}iez, respectively. The second and third term go to zero due to Lemma 2.1
in SM06 the e.a.s. convergence of {Z+(0, T) }+en and {Z+(0, %) }en, and the SE nature and existence
of a log moment for both z,(6) and z:(8). ]

Corollary TA.15. Let {#(0,%)}ien be a sequence initialized at T that converges e.a.s. to an SE
limit sequence {x4(0)}iez, i.e.,

124(0,%) — 24(8)] 50 ast — oo.
Let Elog |x4(0)| < co. Then
124(0,2)* — 24(0)* “%" 0 ast — co.

Proof. The result in this corollary follows immediately from Lemma TA.14. n

Corollary TA.16. Let {#4(0,%)}en and {24(0, %) }en be sequences that converges e.a.s. to their
SE limits {x1(0) }1ez and {x(0)}1ez, respectively, uniformly over some set © i.e.,

sup |#¢(0, %) — z4(0)] %™ 0, sup |#¢(0,%) — z4(0)] “% 0 ast — oo.
6co 6co

Let Esupgeg log |2:(0)] < 0o and Esupgcg log |24(0)| < co. Then
sup |24(0,2)14(0, %) — 2:(0)x(0)] 50 ast — oo.
6co

Proof. This corollary can be proved using exactly the same steps as the proof of Lemma TA.14.
The proof makes use of the subadditivity of the supremum and the fact that {supgeg |¢(0)|}ten
and {supgcg |2+(0)|}ten are SE sequences. L]

Lemma TA.17. Let A (9 fl ) be as defined in (D.6) and evaluated at the initialized series

for f1(0, f1) and ft (9 flo 1)) Similarly, let AEQ)(O) denote the same quantity evaluated at the SE
limits f;(0) and ft1 (0). Then under the conditions of Proposition 3.5, we have

A(0: 1
sup |4 (0, "V
0cO

)= A O) 0.

Proof. Under the conditions of Proposition 3.5 it was already shown that supgcg | ft — fil %0
e.a.s. 2) .

0. The expression for A;” in (D.6) has three different types of terms.

(1) 1
and supgeo || £ — £17] %
Type I: The terms

da sy N 023, 9B 0f:
90 90T’ 00007’ 0090
~(0:1)

These terms for supgceo |A (0 fl ) — AEQ)(0)| converge e.a.s. to zero.
The first term follows by noting that da/00 is constant, and

Osi(f) Oslh)| _ ()

sen |00 50 P SRYET)

6co

X Sup{ft—ftl. (F.7)
0co
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The result now follows from Lemma 2.1 in SM06 due to the e.a.s. convergence ft “Z¢ f, uniformly
over O, the SE nature of the term involving the sup ., and the existence of a small positive moment
for the sup., which implies the existence of a log moment. The e.a.s. convergence for the second

term follows by a similar argument.
a(1

The third term follows directly from the e.a.s. convergence fi : ey fgl) uniformly over ©.
Type II: The terms

da dsy Of &si Ofy

——— e —.

00 0f 007’ 000 f, 00T
Both terms follow by a similar argument as the first set of terms, combined with Corollary TA.16.
For instance for the first term, we have da /00 is constant, and

aSt(ft) e.as. ast(ft)
of T of

uniformly over ©, given the arguments under terms of Type I. Given the uniform e.a.s. convergence
A a(1

of both 9s¢(f)/dfr and fi ), the results follow directly from Corollary TA.16.

Type III: The term

(F.8)

3281& 3ft 8ft

“9 f? 00 907"
The uniform e.a.s. convergence of each of the elements in (9f;/0)(8f;/0") follows from Corollary
TA.16 given a log moment for each of the elements of df;/@, which is implied by nz, > 0. Note

that the latter also implies a log moment for (9f;/0)(9f:/0"). Next, we have by the mean value
theorem that

8281;(ft) B 323t(ft) ‘ < 835t(f*)

8ft2 8ft2 sup sup

sup ‘ —
7 oco! OfF

‘ X sup ‘ft - ft‘ 4.
0o 0cO

The existence of a log moment for sup s supgeg [0%s:/9f?| is implied by af?l > 0. This again
implies the uniform e.a.s. convergence of 9%s;/0f? via Lemma 2.1 in SM06. Also note that
{0?s4 ( ft) /Of?} is SE and has a bounded log moment, because i/ > 0. So the final result follows
by applying Corollary TA.16 to {8%s:(f;)/0f7} and each of the elements of {(0f:/0)(0f:/0)}.
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G More Results on Moment Preserving Functions

Checking the moment conditions needed for a number of the propositions and theorems based
on low-level conditions can be considerably simplified by working with the concept of moment
preserving maps.

The final technical lemma presented below provides simple moment preserving properties for
several common functions of random variables. For notational simplicity we let k() denote the kth
order derivative of a function h. The moment properties on h or h*) can now easily be derived
from moment conditions on the inputs of h and the moment preserving properties through its
membership of the set Mg g(n,m).

Lemma TA.18. (Catalog of M’é@(n, m) Moment Preserving Maps) For every 0 € O, let h(-;0) :
X =R and w(-,-,0): X xV — R be measurable functions.

(a) Let h(-;0) be an affine function,
h(x;B):90+91xV(x,0)eXx@, 0:(90,91)€GQR2.

Then, h(-;0) € Mgg(n,m) with n = m V¥V 6 € O, and rF) (. 0) e Me g(n,m) for all
(0,n,m,k) € © xRS xRy xN. If © is compact, then h € M’éje(n,m) withn =m for k=0
and h®)(;0) € Mg o(n,m) ¥V (n,m, k) € Ry x Rf x N.

(b) Let h(-;0) be a polynomial function,

J
h(z;0) = 027V (2,0) € X x©, 0= (b,...,0))€cOCR!, J>1
=0

Then h*)(-; @) € Mg g(n, m) with m = n/(J — k) ¥V (k,0) € Ng x ©. If © is compact, then
hk) € Mg o(n,m) withm =n/(J —k) ¥V k € Ny.

(c) Let
J
h(z;0) =) 60,277 ¥ (,0) € X x 0,0 = (b, ...,0,) € © CR,
§=0
where r; > 0. Then h®)(;0) € Mg g(n,m) with m = n/(max;r; — k) V (8,k) € © € Ny :
k < minjr;. If © is compact, then h*) € Mg o(n,m) with m = n/(max;r; —k) ¥V k € Ny :
k < min;r;.

(d) Let B
sup |h(x;0)| < h(B) <oco V 0 € O.
reX
Then h(-;0) € Mg g(n,m) V (n,m,0) € ©xRI xR} . If additionally, supgee h(6) <
then h € Mg g(n,m) V (n,m) € R x R{.

>
AN
3

(e) Let
h(-;8) e Ck(x)

and

suE |WF) (2:0)| < hi(0) < 0oV 6 € O.
xre

Then h¥)(-;0) € Mg g(n,m) with m =n/k ¥ @ € ©. If furthermore, supgeg hi(8) < h < oo
, then h®) € Mg o(n,m) with m = n/k.
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(f) Let
w(z,v;0) =0y + 012 + Oav,  (6p,61,0,z,0) € R3 x X x V.

Then wk=ko) (. . 0) € Mg g(n,m) ¥V (kz, kv, 0) € Nog x Ng x © with n = (nz,n,) and m =
min{ng, ny}. If furthermore © is compact, then

wkek) e Mg g(n,m) V (kg ky) € Ng x No,

with m = min{ngz, ny };

(9) If
w(z,v,0) =0y + O1zv, (6p,01) € R2,

then w0 (... 0) € Mg g(n,m) ¥ (kz,ky,0) € Nog x Ng x © with n = (ng,n,) where
m = ngny/(ng + ny). If furthermore, © is compact, then

wk=k) € Mg g(m,m) ¥ (ku, ko) € No x N,
with n = (ng, ny) where m = ngny/(ng + ny).

Proof.
Part (a): By the C,-inequality in (Loeve, 1977, p.157), for (a) we have for some c that

E|h(z:(0);0)]" E|6o + 612,(0)["
cE|0g|™ + cE|6012.(0)]"

<
< clbo]" + cl61]"E[z:(0)]",

and hence, h(-;0) € Mg g(n,m) with n =m V 6 € © because

Esup |2:(0)|" < 00 = E|z(0)|" <00V 0 € © = E|h(x(0);0)]" <oV 6 € O.
0co

Also, h¥)(5;0) € Mg g(n,m) V (m,n,k,0) € Rf x Rf x N x © as hM(,(0),8) = 0; and
R (2(0),0) = 0V i > 2. Furthermore,
Esup |h(x4(0);0)|" = Esup |6y + 012:(0)|"
60O 0o
< cEsup |o]" + ¢ Esup [f12,(0)]"
6co 6co

< csup[bp|” + csup |01|"E sup [2:(0)[",
06 0c6 0c6

and as a result, if © is compact, we have h € Mg g(n, m) with n = m because supgeg |fo|" <
oo and supgeg [01|" < oo, and hence, Esupgcg |2:(0)]" < oo = Esupgeg |h (2£(0);0)]" < .
Again, h®) € Mg g(n,m) ¥V (m,n,k) € Rf x RS x N follows from having h™") (x,(8),8) = 6, and
R (z,(6),0) =0V i> 2.

Part (b): We have that for some ¢

J

E|h(z:(6);0)[" = E|Y_ 0;2(0)" <c > E|6;x(0)"
§=0

C

M- 114

IN

651" Bl (0)1",

<
Il
o
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and hence, h(-;0) € Mg g(n,m) with m =n/J V 0 € © because

Esupgce |2:(0)]" < 00 =
Elz(0)" <oV 0 € © =
E|h(z:(0);0)"7 < e 37 |0;1"Elz:(0)7 "7 < ¢ J - Elxy(0)[* < 0oV 8 € ©.

Also, h¥)(-;0) € Mg g(n,m) V (k,8) € Ny x © with m = n/(J — k), because

J
W) (24(0),0) =) 0327 F
j=k

and hence
Esupgee [24(0)[" < 00 =
Elz(0)* <coV 8 € © =
E|A®0) (,(0);0)["/ V) < 307 |67, (8)7F (" (TR
< e o |03/ RE]2y(0)" < 00 ¥ 6 € ©.
Furthermore,

E sup |h(z(0);0)]" = Esup\ZH (0
6co 6co j=0

J
< ¢ ZEzgg 1027 (6)]"

J

< c ZSUP|‘9| Esup EACH

and hence, if © is compact, we have h(-;0) € Mg o(n, m) with m = n/J because

E sup |24(0)|" < 0o = Esup |h(z(0); 0)|n/J < oo.
6co 0cO

and h(F)(-;0) € Mg o(n,m) with n =m/(J — k) ¥V (0, k) € © x Ny because

E sup [z:(6)" <OOz>Esup\h( (z¢(0 );9)’"/(J—k)<oo
6cO 0cO

by the same argument.

Part (c¢): For some c,
Elh(x:(0);0)]" = E| 29 ;’
7=0

E|0;z,’ (6)["

Mg

J=0

Mk

105" E|(8)["".
7=0
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Hence, h(-;0) € Mg g(n,m) with m = n/max;r; V @ € © because

Esupgce |2:(0)]" < 00 =
Elz:(0)|" <oV 8 € © =
E|h(x:(60); 0)"/ ™75 < ¢ 377 05| E2(0)[7"/ ™7 < 00 V 6 € ©.

Similarly, h*)(-;8) € Mg g(n,m) with m = n/(max;r; — k) V (8,k) € © x Ny : k < min; r;,
because we have

Eh®) (2,(0);0)" = E!Za* o)

IN

ZEW* k)
cZ 071" Bl (6)] 71",
§=0

IN

and hence it follows that

Esupgeg |2:(0)[" < 00 =
Elz:(0)" <oV O € © =
E|h %) (z,(0); 0)["/ (max;j 75) < CZ}]:O ‘Q;WE’%(Q)y(v‘j—k)n/(maxj' Ti—k) « 0.

Furthermore,

E sup |h(2,(0);0)" = ESIIPIZ@ 2y (

0cO 6cO j=0
J
< ¢ x g Esup |0,z (0)" < ¢ g sup |0; |nESUp |z(0)]"7".
0cO 6co
7=0 J=0

Hence, if © is compact, we have h € Mg g (n, m) with m = n/ max; r; because supgcg |0;|" < 00V j,
and hence it follows that

E sup |2:(8)|" < co = Esup |h(z:(0); )"/ ™71 < oo,
6co 0cO

Similarly, we have h(¥) € Mg g(n, m) with m = n/max;(r; — k) because we have

Esup |z:(0)|" < 0o = Esup |h(a(0);0) (M2 757F) < o0
6co 6co

by the same argument.
Part (d): We have that

h(z:(0);0) < h(B) YV 6 € © =
E|h(z,(60);0)|" < h(8)" ¥ (6,n) € © x RY,

and hence, h(-;0) € Mg g(n, m)¥ (n,m,0) € © x Ry x R} because
Esupgce |2:(0)]" < 00 =

E|h(z:(0);0)|™ < h(0)™ < 0 ¥V (n,m,0) € © x R{ x R{.
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Furthermore, if supgeg h(0) < h, then

E sup |h(2:(0);0)" < Esup h(0)" V n € RY.
0co 0€o

Hence, h € Mg o(n, m)¥ (n,m) € Rf x R{ as

Esupgce |2(0)]" < 00 =
supgeo Elh(2:(0); 0)|™ < supgee h(6)™ < h™ < 0o V (n,m) € Rf x R{.

Part (e): We have for some ¢ and by an exact k''-order Taylor expansion around a point x € int(X)
that

Eh(z:(0):0)" < E|> 60;a](0)"

IN

J
¢ Y Elg;z](6)["
5=0

J

< ¢ Y 10;1"Elz ()P,
j=0

where 0o > ), > hj(0) > sup,cy |hF)(20)| ¥V @ € ©, and hence, h(;8) € Mg g(n,m) with
m=n/k Y 0 € © because

Esupgce |2:(0)]" < 00 =
Elz:(0)|" <oV 8 € O =
E|h(z(0); 8)|"/* < CZ]‘.JZO 10,]"E|x:(0)7F < 00 V 6 € ©.

Furthermore,

J
Esup |h(2(6);60)]" = Esup|y_6;xz}(6)"

9co oco

J
¢y Esup 0: x 22(0)"
S Esupls, x /(0)

IN

=0
J .
¢ sup 6, "Esup [«:(8) ",
=0 0€0 0co

IN

and hence, if © is compact, we have h(:;0) € Mg o(n,m) with m = n/k because supgeg |0;]" <
oo V 7, and hence,
E sup |z4(8)[" < co = Esup |h(z,(0); 0)|"* < 0o
6co 0cO
by a similar argument.

Part (f): We have for some ¢ that

E|w(x(0), ve; 0)]" E|6y + 0124(0) + Oav,|"

|00l + 101" Elz:(0)]" + |02 E|ve[".

IN
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Hence, w(k=kv) ¢ Me g(n, m)V (kg, ky) € No x Ng with n = (n,,n,) and m = min{n,,n,} because

Esupgee |2:(0)"* < 0o A Esupgeg |ve]™ < 00 =
Elz: ()" < oo A Elvg|™ < 00

implies

E|w($t(9),Ut;0)|min{nz’n”} < |90’min{nz,nv}+’61‘min{nz,nv}E|xt(0)’min{nz,nv}+
’02‘min{nz,nu}E‘Ut’min{nz,nu} < 00

and E|w™9 (z,(0), vy; @)™} = 16,|" < co. Similarly for v we have
E[w®) (21(6), i ) " m) — (6] < o,
and for any derivative we have
E|wFe ko) (2,(0), vy; 0) [0t = 0 < 00 V (ky, ky) ¢ kg + by > 1.
Furthermore, if © is compact, then

Esup |w(z¢(0),v;0)" = Esup |0p + 0124(0) + O2v¢|"
6cO 6O

IN

sup |6p|™ + sup |61|"E sup |z(0)|" +
60cO 6O 6cO

sup 02| E sup |v;[",
0co 0co

and hence, wk=kv) ¢ Me o(n,m) ¥ (ky, ky) € No x Ny with n = (ng,n,) and m = min{ng, n,}
because

E sup |2:(0)]"*< o0 A Esup |v|™ < o0
0co 6co

implies by a similar argument the bound

E sup \w(k”’k”)(xt(e), v G)Imin{"l’”z} < 00.
6cO

Part (g): We have E|w(z:(8),vs;0)|" < oo if and only if (E|w(x¢(8),vs; 0)]")/" < co. By the
generalized Holder’s inequality

(Elw(ze(8), v 0)[")/" = (Elfo + O14(0)ve|")"/"

|
60| + 161] (Bl (8)we]") /"
6ol + 161 (Elze(6)[) !/ (Eluel*),

IN A

with 1/r +1/s = 1/n, and hence, w*=*v) € Mg g(n,m) ¥ (kz, k) € Ng x Ng with n = (ng,n,) if
1/m=1/ng +1/ny, & m = ngn,/(nz + ny),

because then

E sup |x:(0)|"* < oo A Esup |v|™ < o0,
6co 6co

which implies

nxny

E|lz:(0)|" < 0o A Elv|™ < 0o = E|lw(x¢(0), ve;0) | ratne < o0,
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Furthermore, if © is compact, then

E sup [w(z(6), ve; 0)" < o0
0co

if and only if

(E sup |w(z¢(0), ve; 0)|”)1/" < 00,
6cO

and since we have
(E sup |w(w¢(8),ve; 0)[")/™ = (Esup |00 + O124(0)ve")"/"

6co 6co
1/n

< sup |0p| + sup [61|(E sup [2:(0)ve|")
6cO 6cO 6cO

< sup |0y| + sup |61|(E sup ]wt(G)\r)l/r(E sup |vt\s)1/s,
[2ISC) 6co 0cO 0cO

with 7 and s satisfying 1/r41/s = 1/n by the generalized Holder’s inequality, and hence, w*+#v) €
Me o(n, m)V (kg, ky) € NoxNg with n = (ng, n,) if m = ngn, /(ngz+mn,) by a similar argument. =
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