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B Proofs of Remaining Results in the Main Paper

B.1 Two propositions on SE and the existence of moments

We start with the two propositions used in the proof of Propositions 3.1 and 3.3. These proposi-
tions encompass the score-driven model and are written for the case of general random sequences
{xt(θ, x̄)}t∈N taking values in X ⊆ R, where xt(θ, x̄) is generated by a stochastic recurrence equa-
tion of the form

xt+1(θ, x̄) = φ
(
xt(θ, x̄), vt,θ

)
, (B.1)

where x̄ ∈ X is a fixed initialization value at t = 1, φ : X × V ×Θ→ X is a continuous map, X is
a convex set X ⊆ X ∗ ⊆ R, and θ ∈ Θ is a static parameter vector. For the results that follow we
define the supremum

rkt (θ) := sup
(x,x′)∈X ∗×X ∗:x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|k

|x− x′|k
, k ≥ 0.

Moreover, for random sequences {x1,t}t∈Z and {x2,t}t∈Z, we say that x1,t converges exponentially

fast almost surely (e.a.s.) to x2,t if there exists a constant c > 1 such that ct ‖x1,t − x2,t‖
a.s.→ 0; see

also Straumann and Mikosch (2006) (hereafter referred to as SM06).

Proposition TA.1. For every θ ∈ Θ, let {vt}t∈Z be an i.i.d. sequence and assume ∃ x̄ ∈ X such
that

(i) E log+ |φ(x̄, v1,θ)− x̄| <∞;

(ii) E log r1
1(θ) < 0.

Then {xt(θ, x̄)}t∈N converges e.a.s. to a unique SE solution {xt(θ)}t∈Z for every θ ∈ Θ as t→∞.
If furthermore, for every θ ∈ Θ ∃ n > 0 such that

(iii) ‖φ(x̄, v1,θ)‖n <∞;

(iv) Ern1 (θ) < 1;

then E|xt(θ)|n <∞ ∀ θ ∈ Θ.

Proof of Proposition TA.1. Step 1, SE: The assumption that {vt}t∈Z is i.i.d. and therefore SE
∀ θ ∈ Θ together with the continuity of φ on X ×V×Θ (and resulting measurability w.r.t. the Borel
σ-algebra) implies that {φt := φ(·, vt,θ)}t∈Z is SE for every θ ∈ Θ by Krengel (1985, Proposition
4.3). Condition C1 in Bougerol (1993, Theorem 3.1) is immediately implied by assumption (i)
for every θ ∈ Θ. Condition C2 in Bougerol (1993, Theorem 3.1) is implied, for every θ ∈ Θ, by
condition (ii) since for every θ ∈ Θ,

E log sup
(x,x′)∈X×X :x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|
|x− x′|

= E log r1
t (θ) < 0.

Also due to the stationarity of {vt} we have E log r1
t (θ) = E log r1

1(θ). As a result, for every
θ ∈ Θ, {xt(θ, x̄)}t∈N converges to an SE solution {xt(θ)}t∈Z. Uniqueness and e.a.s. convergence
are obtained by Straumann and Mikosch (2006, Theorem 2.8).
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Step 2, moment bounds: For n ≥ 1 the moment bounds are obtained by first noting that |xt(θ)|
can be bounded as follows:

|xt(θ)| = |φ(xt−1(θ), vt−1,θ)|
≤ |φ(xt−1(θ, x̄), vt−1,θ)− φ(x̄, vt−1,θ)|+ |φ(x̄, vt−1,θ)|

≤ |xt−1(θ)− x̄| × |φ(xt−1(θ), vt−1,θ)− φ(x̄, vt−1,θ)|
|xt−1(θ)− x̄|

+ |φ(x̄, vt−1,θ)|

≤ r1
t−1(θ) |xt−1(θ)− x̄|+ |φ(x̄, vt−1,θ)|

≤ r1
t−1(θ) |xt−1(θ)|+ r1

t−1(θ) |x̄|+ |φ(x̄, vt−1,θ)| ,

so if we keep unfolding this recursion backwards k times, we obtain

|xt(θ)| ≤

 k∏
j=1

r1
t−j(θ)

 |xt−k(θ)| (B.2)

+
k∑
i=1

i−1∏
j=1

r1
t−j(θ)

(|φ(x̄, vt−i,θ)|+ r1
t−i(θ) |x̄|

)
.

Because for every θ ∈ Θ, {r1
t (θ)}t∈Z is an i.i.d. (and therefore SE) sequence of nonnegative random

variables with E log r1
1(θ) < 0 (by condition (ii)) , it follows from Lemma 2.4 of Straumann and

Mikosch (2006) that for every t:

k∏
j=1

r1
t−j(θ)

e.a.s.→ 0 , as k →∞ .

Using this result and the fact that {|xt−k(θ)|}k∈Z is SE by the first part of this proposition and
Krengel (1985, Proposition 4.3), it now follows that for large enough k, we have that the first term
of (B.2) is smaller than 1 almost surely. So there exists a large k such that k∏

j=1

r1
t−j(θ)

 |xt−k(θ)| < 1 , a.s. (B.3)

Now use that for every θ ∈ Θ we have E|xt(θ)|n < ∞ if and only if ‖xt(θ)‖n < ∞. For now we
consider the case where n ≥ 1, meaning that we can use the sub-additivity of ‖ · ‖n, because it is
a norm. By combining (B.2) and (B.3) for some large enough k and by taking the norm ‖ · ‖n, we
obtain

‖xt(θ)‖n ≤ 1 +
k∑
i=1

∥∥∥∥∥∥
i−1∏
j=1

r1
t−j(θ)

 |φ(x̄, vt−i,θ)|

∥∥∥∥∥∥
n

+
k∑
i=1

∥∥∥∥∥∥
i−1∏
j=1

r1
t−j(θ)

 r1
t−i(θ) |x̄|

∥∥∥∥∥∥
n

= 1 +
k∑
i=1

i−1∏
j=1

(Ernt−j(θ))1/n

 ‖φ(x̄, vt−i,θ)‖n

+

k∑
i=1

i−1∏
j=1

(Ernt−j(θ))1/n

 (Ernt−i(θ))1/n |x̄|

= 1 + (‖φ(x̄, vt,θ)‖n + c̄n |x̄|)
k∑
i=1

(c̄n)i−1

≤ 1 +
‖φ(x̄, vt,θ)‖n + c̄n |x̄|

1− c̄n
< ∞ , ∀ θ ∈ Θ ,
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where c̄n := (Ernt (θ))1/n = (Ern1 (θ))1/n < 1 by assumption (iv) and the stationarity of {vt}. The
first inequality follows from the sub-additivity of the norm and the first equality holds by the serial
independence of the elements of the sequence {vt}, which also implies the serial independence of
{r1
t }. The final quantity is finite because ‖φ(x̄, vt,θ)‖n < ∞ by condition (iii). This finishes the

proof of E|xt(θ)|n <∞ for n ≥ 1
For 0 < n < 1, the function ‖ · ‖n is only a pseudo-norm as it is not sub-additive. However, the

proof still follows by instead using the metric ‖ · ‖∗n := (‖ · ‖n)n which is sub-additive; see the Cn
inequality in Loève (1977).

Proposition TA.1 not only establishes the convergence to a unique SE solution, but also estab-
lishes the existence of unconditional moments. The latter property is key to proving the consistency
and asymptotic normality of the MLE in Section 4 of the paper. To establish convergence to an SE
solution, condition (ii) requires the stochastic recurrence equation to be contracting on average.
For the subsequent existence of moments, the contraction condition (iv), together with the moment
bound in (iii), are sufficient. Note that conditions (i)–(ii) are implied by (iii)–(iv).

Following SM06, we also note that conditions (i) and (ii) in Proposition TA.1 provide us with
an almost sure representation of xt(θ, x̄) as a measurable function of {vs}s≤t−1. Let ◦ denote the
composition of maps, e.g.,

φ
(
·, vt−1,θ

)
◦ φ
(
·, vt−2,θ

)
= φ

(
φ
(
·, vt−2,θ

)
, vt−1 , θ

)
.

Then we have the following result.

Remark TA.2. Let conditions (i) and (ii) of Proposition TA.1 hold. Then xt(θ) admits the
following a.s. representation for every θ ∈ Θ

xt(θ) = lim
r→∞

φ
(
·, vt−1,θ

)
◦ φ
(
·, vt−2,θ

)
◦ ... ◦ φ

(
·, vt−r,θ

)
,

and xt(θ) is measurable with respect to the σ-algebra generated by {vs}s≤t−1.

Proposition TA.3 deals with sequences {xt(θ, x̄)}t∈N that, for a given initialization x̄ ∈ X , are
generated by

xt+1(θ, x̄) = φ
(
xt(θ, x̄), vt,θ

)
∀ (θ, t) ∈ Θ× N,

where φ : X × V ×Θ→ X is continuous. We have the following proposition.

Proposition TA.3. Let Θ be compact, {vt}t∈Z be stationary and ergodic (SE) and assume there
exists an x̄ ∈ X , such that

(i) E log+ supθ∈Θ |φ(x̄, vt,θ)− x̄| <∞;

(ii) E log supθ∈Θ r
1
1(θ) < 0.

Then {xt(θ, x̄)}t∈N converges e.a.s. to a unique SE solution {xt(θ)}t∈Z uniformly on Θ as t→∞.
If furthermore ∃ n > 0 such that

(iii) ‖φ(x̄, vt, ·)‖Θn <∞;

(iv) supθ∈Θ |φ(x, v,θ)− φ(x′, v,θ)| < |x− x′| ∀ (x, x′, v) ∈ X × X × V with x 6= x′.

then E supθ∈Θ |xt(θ)|n <∞.

TB.p3



The contraction condition (iv) in Proposition TA.3 is stricter than the similar condition (iv)
in Proposition TA.1. Rather than only requiring the contraction property to hold in expectation,
condition (iv) in Proposition TA.3 holds for all v ∈ V.

Again, we note that conditions (i) and (ii) in Proposition TA.3 provide us with an almost sure
representation of xt(θ).

Remark TA.4. Let conditions (i) and (ii) of Proposition TA.3 hold. Then xt(θ) admits the
following a.s. representation for every θ ∈ Θ

xt(θ) = lim
r→∞

φ
(
·, vt−1,θ

)
◦ φ
(
·, vt−2,θ

)
◦ ... ◦ φ

(
·, vt−r,θ

)
and xt(θ) is measurable with respect to the σ-algebra generated by {vs}s≤t−1.

Proof of Proposition TA.3. Step 0, additional notation: Following Straumann and Mikosch (2006,
Proposition 3.12), the uniform convergence of the process supθ∈Θ |xt(θ, x̄)−xt(θ)| e.a.s.→ 0 is obtained
by appealing to Bougerol (1993, Theorem 3.1) using sequences of random functions {xt(·, x̄)}t∈N
rather than sequences of real numbers. This change is subtle in the notation, but important. We
refer to SM06 for details.

The elements xt(·, x̄) are random functions that take values in the separable Banach space
XΘ ⊆ (C(Θ,X ), ‖ · ‖Θ), where ‖xt(·)‖Θn ≡ (E supθ∈Θ |xt(θ)|n )1/n and ‖xt(·)‖Θ ≡ supθ∈Θ |xt(θ)|.
The functions xt(·, x̄) are generated by

xt(·, x̄) = φ∗(xt−1(·, x̄), vt−1, ·) ∀ t ∈ {2, 3, . . .},

with starting function x1(∅,θ, x̄) = x̄ ∀ θ ∈ Θ, and where {φ∗(·, vt, ·)}t∈Z is a sequence of stochastic
recurrence equations φ∗ : C(Θ)×Θ→ C(Θ) ∀ t as in Straumann and Mikosch (2006, Proposition
3.12). Note the subtle but important difference between φ∗(·, vt, ·) : C(Θ) × Θ → C(Θ) and
φ(·, vt, ·) : X ×Θ→ X as alluded to earlier.

Step 1, SE: With the above notation in place, we now first prove the SE part of the proposition.
The assumption that {vt}t∈Z is SE together with the continuity of φ on X × V × Θ implies that
{φ∗(·, vt, ·)}t∈Z is SE. Condition C1 in Bougerol (1993, Theorem 3.1) is now implied directly by
condition (i), since there exists a function x̄Θ ∈ C(Θ) with x̄Θ(θ) = x̄ ∀ θ ∈ Θ that satisfies
E log+ ‖φ∗(x̄Θ(·), vt, ·)− x̄Θ(·)‖Θ = E log+ supθ∈Θ |φ(x̄, vt,θ)− x̄| <∞.

TB.p4



Condition C2 in Bougerol (1993, Theorem 3.1) is directly implied by condition (ii), since

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

‖φ∗(x̄Θ(·), vt, ·)− φ∗(x̄′Θ(·), vt, ·)‖Θ

‖x̄Θ(·)− x̄′Θ(·)‖Θ
=

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

supθ∈Θ |φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

=

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ

|φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

=

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ|x̄Θ(θ)6=x̄′Θ(θ)

|φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

≤

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ|x̄Θ(θ)6=x̄′Θ(θ)

|φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
|x̄Θ(θ)− x̄′Θ(θ)|

×

|x̄Θ(θ)− x̄′Θ(θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

≤

E log
(

sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ|x̄Θ(θ) 6=x̄′Θ(θ)

|φ(x̄Θ(θ), vt,θ)− φ(x̄′Θ(θ), vt,θ)|
|x̄Θ(θ)− x̄′Θ(θ)|

)
×

(
sup

‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ

|x̄Θ(θ)− x̄′Θ(θ)|
‖x̄Θ(·)− x̄′Θ(·)‖Θ

)
≤

E log sup
‖x̄Θ−x̄′Θ‖Θ>0

sup
θ∈Θ

sup
x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|
|x− x′|

=

E log sup
θ∈Θ

sup
x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|
|x− x′|

= E log sup
θ∈Θ

r1
t (θ) =

E log sup
θ∈Θ

r1
1(θ) < 0.

As a result, {xt(·, x̄)}t∈N converges to an SE solution {xt(·)}t∈Z in ‖ · ‖Θ-norm. Uniqueness and
e.a.s. convergence is obtained in Straumann and Mikosch (2006, Theorem 2.8), such that supθ∈Θ

|xt(θ, x̄)− xt(θ)| e.a.s.→ 0.

Step 2, moment bounds: We use a similar argument as in the proof of Proposition TA.1. First
consider n ≥ 1. Using condition (iv.a), define c̄ < 1 such that supθ∈Θ |φ(x, v,θ) − φ(x′, v,θ)| ≤
c̄ |x− x′| for all (x, x′, v). and note that we can bound ‖xt(·)‖Θ as follows:

‖xt(·)‖Θ = ‖φ∗(xt−1(·), vt−1, ·)‖Θ

≤ ‖φ∗(xt−1(·), vt−1, ·)− φ(x̄, vt−1, ·)‖Θ + ‖φ(x̄, vt−1, ·)‖Θ

≤ sup
θ∈Θ
|φ(xt−1(θ), vt−1,θ)− φ(x̄, vt−1,θ)|+ ‖φ(x̄, vt−1, ·)‖Θ

≤ c̄ · sup
θ∈Θ
|xt−1(θ)− x̄|+ ‖φ(x̄, vt−1, ·)‖Θ

≤ c̄ · ‖xt−1(·)‖Θ + c̄ |x̄|+ ‖φ(x̄, vt−1, ·)‖Θ .

Unfolding this recursion k steps backwards, leads to

‖xt(·)‖Θ ≤ (c̄)k · ‖xt−k(·)‖Θ +
k∑
i=1

(c̄)i−1 (‖φ(x̄, vt−i, ·)‖Θ + c̄ |x̄|)

≤ 1 +
k∑
i=1

(c̄)i−1 (‖φ(x̄, vt−i, ·)‖Θ + c̄ |x̄|) , (B.4)
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where the final inequality holds for some large enough k, because (c̄)k goes to zero at an expo-
nential rate as k → ∞ and because {‖xt−k(·)‖Θ}k∈Z is SE by the first part of the proposition
and Krengel (1985, Proposition 4.3). Now use that supt E supθ∈Θ |xt(θ, x̄)|n < ∞ if and only if
supt ‖xt(θ, x̄)‖Θn < ∞. Consider taking the norm ‖ · ‖n of both sides of the inequality (B.4) for
some large enough k. Then

‖xt(·)‖Θn ≤ 1 +

k∑
i=1

(c̄)i−1 (‖φ(x̄, vt−i, ·)‖Θn + c̄ |x̄|)

≤ 1 +
‖φ(x̄, vt, ·)‖Θn + c̄ |x̄|

1− c̄
<∞ ,

where the first inequality holds by the subadditivity of ‖ · ‖n for n ≥ 1, the second inequality holds
because c̄ < 1 and ‖φ(x̄, vt−i, ·)‖Θn = ‖φ(x̄, vt, ·)‖Θn for every i because {vt} is SE and where the
final expression is finite because ‖φ(x̄, vt, ·)‖Θn < ∞ by condition (iii). This establishes the result
for n ≥ 1.

When 0 < n < 1, then ‖ · ‖n is not sub-additive. Just as in the proof of Proposition TA.1, in
this case the metric ‖ · ‖∗n := (‖ · ‖n)n can be used. This works because ‖ · ‖∗n is sub-additive (see
the Cn inequality in Loève (1977)).

B.2 Proofs of remaining results in the main paper

Proof of Theorem 4.3. Recall that f̂t denotes the initialized f̂t(θ, f̂1). Assumption 4.2 implies that
`T (θ, f̂1) is a.s. continuous (a.s.c.) in θ ∈ Θ through continuity of each ˜̀

t(θ, f̂1) = `(ft, y,θ),
ensured in turn by the continuous differentiability of p̄, ḡ, ḡ′ and the continuity of St, the implied
a.s.c. of s(ft, y;λ) = St · (∂p̄t/∂f + ∂ log ḡ′/∂f) in (ft;λ) and the resulting continuity of f̂t in θ as
a composition of t continuous maps. The compactness of Θ implies by Weierstrass’ theorem that
the arg max set is non-empty a.s. and hence that θ̂T exists a.s. ∀ T ∈ N. Similarly, Assumption 4.2
implies that `T (θ, f̂1) = `

(
{yt}Tt=1, {f̂t}Tt=1,θ

)
is continuous in yt ∀ θ ∈ Θ and hence measurable

w.r.t. a Borel σ-algebra. The measurability of θ̂T follows from White (1994, Theorem 2.11) or
Gallant and White (1988, Lemma 2.1, Theorem 2.2).

The following two lemmas support the proof of Theorem 4.6.

Lemma TA.5. Under the conditions of Theorem 4.6, supθ∈Θ |`T (θ, f̂1)− `T (θ)| a.s.→ 0.

Proof. Note that instead of considering the average log likelihood `T (θ, f̂1) it is sufficient to show
that supθ∈Θ |˜̀t(θ, f̂1)− ˜̀

t(θ)| e.a.s.→ 0 , where ˜̀
t(·, f̂1) = `(ft(·, f̂1), yt, ·) is the individual log likelihood.

The expression for the likelihood in (2.5) and the differentiability conditions in Assumption 4.2
ensure that ˜̀

t(·, f̂1) is continuous in (f̂t, yt). All the assumptions of Proposition 3.3 relevant for the
process {ft} hold as well. To see this, note that

• the compactness of Θ is imposed in Assumption 4.1;

• the moment bound E|yt|ny <∞ is ensured in the statement of Theorem 4.6;

• the differentiability s ∈ C(2,0,2)(F ×Y×Λ) is implied by ḡ ∈ C(2,0)(F ×Y), p̄ ∈ C(2,2)(Ũ ×Λ),
and S ∈ C(2,2)(F × Λ));

• and finally, conditions (i)-(v) in Proposition 3.3 are ensured by Assumption 4.4.
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As a result, there exists a unique SE sequence {ft}t∈Z such that supθ∈Θ |f̂t − ft|
e.a.s.→ 0 ∀f̂1 ∈ F .

Because ˜̀
t is differentiable in ft by assumption, the mean value theorem implies that

sup
θ∈Θ
|˜̀t(θ, f̂1)− ˜̀

t(θ)| ≤ sup
θ∈Θ

sup
f
|∂`(f, yt, λ)/∂f | · sup

θ∈Θ
|f̂t − ft|

and therefore we obtain the required result supθ∈Θ |˜̀t(θ, f̂1)− ˜̀
t(θ)| e.a.s.→ 0 by Lemma 2.1 in SM06

since supθ∈Θ |f̂t − ft|
e.a.s.→ 0 by Proposition 3.3 and supθ∈Θ supf |∇t| is SE by the continuity of

the score which follows from Assumption 4.2, and has a logarithmic moment because n̄∇ > 0 by
Assumption 4.5.

Lemma TA.6. Under the conditions of Theorem 4.6, supθ∈Θ |`T (θ)− `∞(θ)| a.s.→ 0.

Proof. We apply the ergodic theorem for separable Banach spaces of Rao (1962) (see also Strau-
mann and Mikosch (2006, Theorem 2.7)) to the sequence {`T (·)} with elements taking values
in C(Θ), so that supθ∈Θ |`T (θ) − `∞(θ)| a.s.→ 0, where `∞(θ) = E˜̀

t(θ) ∀ θ ∈ Θ. The ULLN

supθ∈Θ |`T (θ)− E˜̀
t(θ)| a.s.→ 0 as T →∞ follows, under a moment bound E supθ∈Θ |˜̀t(θ)| <∞, by

the SE nature of {`T }t∈Z, which is implied by continuity of ` on the SE sequence {(ft, yt)}t∈Z
and Proposition 4.3 in Krengel (1985). Moment bound E supθ∈Θ |˜̀t(θ)| < ∞ is ensured by
E supθ∈Θ |ft|nf <∞ , E|yt|ny <∞, and the fact that Assumption 4.5 implies n` ≥ 1. We stress that
Assumption 4.5 can be checked via low-level conditions on ny and nf via the moment preserving
maps as laid out in Technical Appendix G.

The following lemmas support the proof of Theorem 4.10.

Lemma TA.7. Under the conditions of Theorem 4.10,

Q∞(θ)−Q∞(θ0) =

∫ ∫ [∫
py(y|f, λ0) log

py(y|f̃ ;λ)

py(y|f ;λ0)
dy

]
dPft,f̃t(f, f̃ ;θ0,θ),

for all (θ0,θ) ∈ Θ×Θ : θ 6= θ0.

Proof. Using the observation-driven dynamic structure of the score-driven model, we can substi-
tute the conditioning on {ys}s≤t−1 by the conditioning on ft, where ft is generated through the
generalized autoregressive score recursion. Under the present conditions, the (non-initialized) limit
process

{
ft(θ)

}
t∈Z is a measurable function of {ys}s≤t−1, and hence SE by Krengel’s theorem for

any θ ∈ Θ; see also SM06. By substituting the conditioning, we obtain

Q∞(θ)−Q∞(θ0) = E log py

(
yt

∣∣∣ft(θ);λ
)

− E log py

(
yt

∣∣∣ft(θ0);λ0

)
=

∫ ∫ ∫
log

py(y|f̃ ;λ)

py(y|f ;λ0)
dPyt,ft,f̃t(y, f, f̃ ;θ0,θ),

(B.5)

∀ (θ0,θ) ∈ Θ×Θ : θ 6= θ0, with Pyt,ft,f̃t(y, f, f̃ ;θ0,θ) denoting the cdf of (yt, ft(θ0), f̃t(θ)). Define

the bivariate cdf Pft,f̃t(f, f̃ ;θ0,θ) for the pair (ft(θ0), f̃t(θ)). Note that this bivariate cdf depends

on θ through the recursion defining f̃t(θ), and on θ0 through yt−1 and ft(θ0). Also note that for
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any (θ0,θ) ∈ Θ × Θ this cdf does not depend on the initialization f̂1 because, under the present
conditions, the limit criterion is a function of the unique limit SE process

{
ft(θ)

}
t∈Z, and not of

the initialized process
{
f̂t(θ, f̂1)

}
t∈N; see the proof of Theorem 4.6.

We re-write the normalized limit criterion function Q∞(θ) − Q∞(θ0) by factorizing the joint
distribution Pyt,ft,f̃t(y, f, f̃ ;θ0,θ) as

Pyt,ft,f̃t(y, f, f̃ ;θ0,θ) = Pyt|ft,f̃t(y|f, f̃ ;θ0,θ) · Pft,f̃t(f, f̃ ;θ0,θ)

= Pyt|ft(y|f, λ0) · Pft,f̃t(f, f̃ ;θ0,θ),

where the second equality holds because under the axiom of correct specification, and conditional
on ft(θ0), observed data yt does not depend on f̃t(θ) ∀ (θ0,θ) ∈ Θ×Θ : θ 6= θ0. We also note that
the conditional distribution Pyt|ft(y|f, λ0) has a density py(y|f, λ0) defined in equation (2.1). The
existence of this density follows because g(f, ·) is a diffeomorphism g(f, ·) ∈ D(U) for every f ∈ F ,
i.e., it is continuously differentiable and uniformly invertible with differentiable inverse.

We can now re-write Q∞(θ)−Q∞(θ0) as

Q∞(θ)−Q∞(θ0) =∫ ∫ ∫
log

py(y|f̃ ;λ)

py(y|f ;λ0)
dPyt|ft(y|f, λ0) · dPft,f̃t(f, f̃ ;θ0,θ) =∫ ∫ [∫

log
py(y|f̃ ;λ)

py(y|f ;λ0)
dPyt|ft(y|f, λ0)

]
dPft,f̃t(f, f̃ ;θ0,θ) =

∫ ∫ [∫
py(y|f, λ0) log

py(y|f̃ ;λ)

py(y|f ;λ0)
dy

]
dPft,f̃t(f, f̃ ;θ0,θ),

for all (θ0,θ) ∈ Θ×Θ : θ 6= θ0.

Lemma TA.8. Under the conditions of Theorem 4.10, for every θ 6= θ0 there exists a set YFF̃ ⊆
Y×F×F̃ with positive probability mass and with orthogonal projections YF̃ ⊆ Y×F , FF̃ ⊆ F×F̃ ,
etc., for which (i)–(ii) hold if λ 6= λ0, and for which (i)–(iii) hold if λ = λ0, where

(i) py(y|f, λ0) > 0 ∀ (y, f) ∈ YF ;

(ii) if (f̃, λ) 6= (f, λ0), then py(y|f̃ ;λ) 6= py(y|f ;λ0) ∀ (y, f, f̃) ∈ YFF̃ ;

(iii) if λ = λ0 and (ω, α, β) 6= (ω0, α0, β0), then f 6= f̃ for every (f, f̃) ∈ FF̃ .

Proof.
Part (i): The first result follows by noting that under the correct specification axiom, the conditional
density py(y|f, λ0) is implicitly defined by yt(θ0) = g(f, ut), ut ∼ pu(ut;λ0). Note that g(f, ·) is a
diffeomorphism g(f, ·) ∈ D(U) for every f ∈ Fg and hence an open map, i.e., g−1(f, Y ) ∈ T (Ug)
for every Y ∈ T (Yg) where T (A) denotes a topology on the set A. Therefore, since pu(u;λ) >
0 ∀ (u, λ) ∈ U × Λ for some open set U ⊂ U , which exists by the assumption that ut has a density
with respect to Lebesgue measure. As a result, we obtain that there exists an open set Y ∈ T (Yg)
such that py(y|f, λ0) > 0 ∀ (y, f) ∈ Y ×Fg, namely the image of any open set U ⊆ U under g(f, ·).
Next, YFF̃ can be constructed by taking the union of Y over FF̃ for any FF̃ of positive measure for
λ 6= λ0, and for a set FF̃ satisfying (iii) below if λ = λ0.
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Part (ii): The second result is implied directly by the assumption that py(y|f, λ) = py(y|f ′, λ′)
almost everywhere in Y for some open set Y ⊂ Y if and only if f = f ′ and λ = λ′. The existence
of an open set Y was already argued under (i) above.

Part (iii): The assumptions that α 6= 0 ∀θ ∈ Θ (including α0 6= 0); and that ∂s(f, y;λ)/∂y 6= 0
almost everywhere in Ys for every (f, λ) ∈ F × Λ; together with the fact that ut has a density,
together ensure that both F and F̃ can be chosen as open subsets, i.e., to have multiple different
values.

The result is now obtained by a proof by contradiction: if λ = λ0 ∧ (ω, α, β) 6= (ω0, α0, β0), but
there is no set YFF̃ with positive probability mass satisfying f 6= f̃ ∀ (f, f̃) ∈ FF̃ , then it must be
that (ω, α, β) = (ω0, α0, β0), which is a contradiction.

The proof goes as follows. Let (θ0,θ) ∈ Θ × Θ be a pair satisfying λ = λ0 ∧ (ω, α, β) 6=
(ω0, α0, β0). If there is no YFF̃ of positive probability mass with f 6= f̃ for all (f, f̃) ∈ FF̃ , then
it must be that f = f̃ except for a set of zero probability. This implies that f̃t(θ)

a.s.
= ft(θ0) for

arbitrary t. Putting this into the recurrence equation for both ft(θ0) and f̃t(θ) and subtracting
the two, we obtain

0 = φ(ft(θ), ye,θ)− φ(ft(θ), ye,θ0) (B.6)

= (ω − ω0) + (β − β0)ft(θ0) + (α− α0)s(ft(θ0), yt(θ0), λ0).

Note that s(ft(θ0), yt, λ0) is not constant in yt ∈ Y where Y is an open set, because α 6= 0 ∀ θ ∈ Θ
and ∂s(f, y, λ)/∂y 6= 0 for every λ ∈ Λ and almost every (y, f) ∈ Ys × Fs. As a result, we must
have α = α0 for (B.6) to hold.

Given α = α0 ∧ λ = λ0, and given F can be chosen as an open set due to the fact that ut has a
density and α0 > 0, it follows that β = β0. Given the result for α and β, the result ω = ω0 follows
directly from (B.6), which establishes the contradiction and the result.
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C Derivative Expressions for the Main Example

In this part, we provide some of the technical details of the main example of the paper, including
the detailed expressions for of the required derivatives.

Let {ut}t∈N be i.i.d. Student’s t distributed noise with λ degrees of freedom. Consider the model

yt = f
1/2
t ut as in Creal et al. (2011, 2013). Following Creal et al. (2011, 2013), we scale the score

by (a time-invariant multiple of) the conditional Fisher information, which in this case amounts to
setting S(ft;λ) = 2f2

t .
The following set of derivatives is straightforward (though tedious) to compute, either by hand

or by a symbolic computation package such as Maple or Mathematica.

p̄t = log
Γ
(
λ+1

2

)
Γ
(
λ
2

)√
πλ
− 1

2(λ+ 1) log

(
1 +

y2
t

λft

)
,

log ḡ′t = −1
2 log ft

∇t =
(1 + λ−1)y2

t /(2f
2
t )

1 + y2
t /(λft)

− 1
2f
−1
t ,

st =
(1 + λ−1)y2

t

1 + y2
t /(λft)

− ft,

∂st/∂ft =
(1 + λ−1)y4

t /(λf
2
t )(

1 + y2
t /(λft)

)2 − 1,

su,t =

(
(1 + λ−1)u2

t

1 + λ−1u2
t

− 1

)
ft,

∂su,t/∂ft =
(1 + λ−1)u2

t

1 + λ−1u2
t

− 1.

∂st/∂λ =
y2
t(

λ+ y2
t /ft

) − (1 + λ)y2
t(

λ+ y2
t /ft

)2 =

(
(y2
t /ft)

2 − (y2
t /ft)

)(
λ+ y2

t /ft
)2 · ft,

∂2st/∂λ
2 =
−2
(
(y2
t /ft)

2 − (y2
t /ft)

)(
λ+ y2

t /ft
)3 · ft,

∂2st/∂λ∂ft =
(1 + λ)(y4

t /f
2
t )(

λ+ y2
t /ft

)2 =
(y4
t /f

2
t )(

λ+ y2
t /ft

)2 − 2(1 + λ)(y4
t /f

2
t )(

λ+ y2
t /ft

)3 ,

∂2st/∂f
2
t =
−2(1 + λ−1)(y4

t /f
2
t )(

1 + y2
t /(λft)

)3 · 1

λft
,

∂3st/∂λ
3 =

6
(
(y2
t /ft)

2 − (y2
t /ft)

)(
λ+ y2

t /ft
)4 · ft,

∂3st/∂λ
2∂ft =

2(y2
t /ft)

2
(
λ+ 3− 2(y2

t /ft)
)(

λ+ y2
t /ft

)4 ,

∂3st/∂λ∂f
2
t =

2(y2
t /ft)

2
(
λ2 + 2λ− (1 + 2λ)(y2

t /ft)
)(

λ+ y2
t /ft

)4 · 1

ft
,

∂3st/∂f
3
t =

6(1 + λ−1)y4
t /(λf

2
t )(

1 + y2
t /(λft)

)4 · 1

f2
t

.
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We obtain directly that

• |st| ≤ supyt |st| < c1 · |ft| for some constant c1, and thus ns ≤ nf .

• supyt |∂st/∂λ| ≤ c1 · |ft| and thus nλs ≤ nf .

• supyt |∂st/∂ft| ≤ c1 and thus n̄fs →∞.

• supyt |∂
2st/∂ft∂λ| ≤ c1 and thus n̄fλs →∞.

• supyt |∂
2st/∂f

2
t | ≤ c1f

−1
t ≤ c1/ω and thus n̄ffs →∞.

• supyt |∂
2st/∂λ

2| ≤ c1ft and thus nλλs ≤ nf .

• supyt |∂
3st/∂f

3
t | ≤ c1f

−2
t ≤ c1/ω

2 and thus n̄fffs →∞.

• supyt |∂
3st/∂λ

2∂ft| ≤ c1 and thus n̄λλfs →∞.

• supyt |∂
3st/∂λ∂f

2
t | ≤ c1f

−1
t ≤ c1/ω and thus n̄λffs →∞.

• | log ḡ′t| ≤ c1 + c2|ft|δ for arbitrarily small positive δ given ft > ω, and thus nlog ḡ′ ≤ nf/δ.

• |p̄t| < c1+c2 log |1+y2
t /(λω)| ≤ c3+c4|yt|δ for arbitrarily small positive δ, and thus np̄ ≤ ny/δ.

• |∇t| < supyt |∇t| ≤ c1f
−1
t + 1

2f
−1
t ≤ c2/ω, and thus n̄∇ →∞.

For asymptotic normality, a further sets of moments and derivatives need to be established. We
have

p̄λt =

(
∂

∂λ
log

Γ
(

1
2(λ+ 1)

)
Γ(λ/2)

√
πλ

)
+ 1

2

(1 + λ−1)y2
t /(λft)

1 + y2
t /(λft)

− 1
2 log

(
1 + y2

t /(λft)
)
,

p̄λλt = −1
2

(
y2
t /(λft)

)
λ−2

(
2 + (1− λ)

(
y2
t /(λft)

))
(

1 + y2
t /(λft)

)2 ,

p̄λft = −1
2

f−1
t

(
y2
t /ft

)(
1− y2

t /ft
)(

λ+ y2
t /ft

)2 ,

p̄λλft =
f−1
t

(
y2
t /ft

)(
1− y2

t /ft
)(

λ+ y2
t /ft

)3 ,

p̄λfft = 1
2

f−2
t

(
y2
t /ft

)(
2λ− 3λy2

t /ft − y4
t /f

2
t

)(
λ+ y2

t /ft

)3 ,
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∂∇t/∂f =

1
2λf

−2
t

(
λ− 2λy2

t /ft − y4
t /f

2
t

)
(
λ+ y2

t /ft

)2 ,

∂∇t/∂λ =
−1

2f
−1
t

(
y2
t /ft

)(
1− y2

t /ft
)(

λ+ y2
t /ft

)2 ,

∂2∇t/∂f2 =
−λf−3

t

(
λ2 − 3λy4

t /f
2
t − 3λ2y2

t /ft − y6
t /f

3
t

)
(
λ+ y2

t /ft

)3 ,

∂2∇t/∂f∂λ =

1
2f
−2
t

(
y2
t /ft

)(
2λ− 3λy2

t /ft − y4
t /f

2
t

)
(
λ+ y2

t /ft

)3 ,

∂2∇t/∂λ2 =
f−1
t

(
y2
t /ft

)(
1− y2

t /ft
)(

λ+ y2
t /ft

)3 .

From these moments and derivatives, we obtain

• |p̄λt | ≤ c1 + c2 log(1 + yt/(λω)), such that nλp̄ ≤ ny/δ for arbitrarily small positive δ.

• |p̄λλt | ≤ c1, such that nλλp̄ →∞.

• |p̄λft | ≤ c1f
−1
t ≤ c1/ω, such that n̄λfp̄ →∞.

• |p̄λλft | ≤ c1f
−1
t ≤ c1/ω, such that n̄λλfp̄ →∞.

• |p̄λfft | ≤ c1f
−2
t ≤ c1/ω

−2, such that n̄λffp̄ →∞.

• |∂∇/∂f | ≤ c1f
−2
t ≤ c1/ω

2, such that n̄f∇ →∞.

• |∂∇/∂λ| ≤ c1f
−1
t ≤ c1/ω, such that n̄λ∇ →∞.

• |∂2∇/∂f2| ≤ c1f
−3
t ≤ c1/ω

3, such that n̄ff∇ →∞.

• |∂2∇/∂f∂λ| ≤ c1f
−2
t ≤ c1/ω

2, such that n̄λf∇ →∞.

• |∂2∇/∂λ2| ≤ c1f
−1
t ≤ c1/ω, such that n̄λλ∇ →∞.
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D Likelihood Derivatives of Time-Varying Parameter

D.1 Explicit expressions for the likelihood and its derivatives

We assume that λ ∈ R. Similar derivations hold for vector valued λ ∈ Rdλ . The likelihood function
of the score-driven model is given by

`T (θ, f̂1) =
1

T

T∑
t=1

˜̀
t(θ, f̂1) =

1

T

T∑
t=1

`(f̂t, yt;λ) (D.1)

=
1

T

T∑
t=1

log pu

(
g−1
(
f̂t, yt

)
; λ
)

+ log
∂g−1

(
ft, yt

)
∂y

=
1

T

T∑
t=1

log pu(ḡt;λ) + log
∂ḡt
∂y

=
1

T

T∑
t=1

p̄t + log ḡ′t.

Note that we have defined the score ∇t as ∂`(f̂t, yt;λ)/∂ft = ∂(p̄t + log ḡ′t)/∂ft. The derivative of
the likelihood is given by

`′T (θ, f̂
(0:1)
1 ) =

∂`T (θ, f̂1)

∂θ
=

1

T

T∑
t=1

˜̀′
t(θ, f̂

(0:1)
1 ) (D.2)

=
1

T

T∑
t=1

∂f̂t
∂θ
·A∗t +

∂p̄t
∂θ

=
1

T

T∑
t=1

∂f̂t
∂θ
· ∇t +

∂p̄t
∂θ

,

with

A∗t :=
∂p̄t
∂ft

+
∂ log ḡ′t
∂ft

= ∇t, f̂
(0:1)
1 =

(
f̂1 , ∂f̂1/∂θ

)
,

and

∂f̂t
∂θ

=

[
∂f̂t
∂ω

∂f̂t
∂α

∂f̂t
∂β

∂f̂t
∂λ

]>
,

∂p̄t
∂θ

:=

[
0 0 0

∂p̄t
∂λ

]>
.

Note that ∂f̂t/∂θ = ˆ̂f
(1)

t . The second derivative of the log-likelihood function is given by

`′′T (θ, f̂
(0:2)
1 ) =

∂2`T (θ, f̂1)

∂θ∂θ>
(D.3)

=
1

T

T∑
t=1

(
∂2f̂t

∂θ∂θ>
·A∗t +

∂f̂t
∂θ
· ∂A

∗
t

∂ft
· ∂f̂t
∂θ>

+
∂f̂t
∂θ
· ∂A

∗
t

∂θ>
+

∂2p̄t
∂θ∂ft

∂f̂t

∂θ>
+

∂2p̄t

∂θ∂θ>

)

=
1

T

T∑
t=1

(
∂2f̂t

∂θ∂θ>
·A∗t +

∂f̂t
∂θ

∂f̂t

∂θ>
·B∗t +

∂f̂t
∂θ

(
C∗t )> + C∗t

∂f̂t

∂θ>
+

∂2p̄t

∂θ∂θ>

)
,

=
1

T

T∑
t=1

(
∂2f̂t

∂θ∂θ>
· ∇t +

∂f̂t
∂θ

∂f̂t

∂θ>
∂∇t
∂ft

+
∂f̂t
∂θ

∂∇t
∂θ>

+
∂∇t
∂θ

∂f̂t

∂θ>
+

∂2p̄t

∂θ∂θ>

)
,
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where

f̂
(0:2)
1 =

(
f̂1 , ∂f̂1/∂θ , ∂

2f̂1/∂θ∂θ
>
)
,

B∗t =
∂2p̄t
∂f2

t

+
∂2 log ḡ′t
∂f2

t

=
∂∇t
∂ft

,

C∗t =
[

0 0 0 ∂2p̄t
∂ft∂λ

]>
=
[

0 0 0 ∂∇t
∂λ

]>
=
∂A∗t
∂θ

,

∂2f̂t

∂θ∂θ>
=


∂2f̂t
∂ω2

∂2f̂t
∂ω∂α

∂2f̂t
∂ω∂β

∂2f̂t
∂ω∂λ

∂2f̂t
∂α∂ω

∂2f̂t
∂α2

∂2f̂t
∂α∂β

∂2f̂t
∂α∂λ

∂2f̂t
∂β∂ω

∂2f̂t
∂β∂α

∂2f̂t
∂β2

∂2f̂t
∂β∂λ

∂2f̂t
∂λ∂ω

∂2f̂t
∂λ∂α

∂2f̂t
∂λ∂β

∂2f̂t
∂λ2

 ,

∂2p̄t

∂θ∂θ>
=


0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 ∂2p̄t
∂λ2

 ,
where ∂2f̂t/∂θ∂θ

> = ˆ̂f
(2)

t .

D.2 Expressions for the derivative processes of ft

We have θ = (ω, α, β, λ) ∈ Θ and write ∂s(ft, vt;λ)/∂θi as the derivative of the scaled score w.r.t. λ
only, not accounting for the dependence of ft on θ. Differentiating the transition equation of the
score-driven model, we obtain

∂ft+1

∂θi
=

∂ω

∂θi
+
∂α

∂θi
st + α

∂st
∂ft

∂ft
∂θi

+ α
∂st
∂θi

+
∂β

∂θi
ft + β

∂ft
∂θi

, (D.4)

= A
(1)
j,t +

∂ft
∂θi

Bt,

with

A
(1)
t = A

(1)
t (ft,θ) =

(
A

(1)
1,t (ft,θ), . . . ,A

(1)
4,t (ft,θ))> =

∂ω

∂θ
+
∂α

∂θ
st + α

∂st
∂θ

+
∂β

∂θ
ft,

Bt = Bt(ft,θ) = α
∂st
∂ft

+ β.

For the second derivative process, we obtain a recursion

∂2ft+1

∂θ∂θ>
=

∂A
(1)
t

∂θ>
+
∂A

(1)
t

∂ft

∂ft

∂θ>
+
∂ft
∂θ

∂Bt

∂θ>
+
∂ft
∂θ

∂Bt

∂ft

∂ft

∂θ>
+

∂2ft

∂θ∂θ>
Bt (D.5)

= A
(2)
t +

∂2ft

∂θ∂θ>
Bt,

with

A
(2)
t =

∂A
(1)
t

∂θ>
+
∂A

(1)
t

∂ft

∂ft

∂θ>
+
∂ft
∂θ

∂Bt

∂θ>
+
∂Bt

∂ft

∂ft
∂θ

∂ft

∂θ>
(D.6)

=
(∂α
∂θ

∂st

∂θ>
+
∂st
∂θ

∂α

∂θ>
+ α

∂2st

∂θ∂θ>

)
+
(∂α
∂θ

∂st
∂ft

+ α
∂2st
∂θ∂ft

+
∂β

∂θ

) ∂ft
∂θ>

+
∂ft
∂θ

(∂st
∂ft

∂α

∂θ>
+ α

∂2st

∂ft∂θ
> +

∂β

∂θ>

)
+ α

∂2st
∂f2

t

∂ft
∂θ

∂ft

∂θ>
.
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E Further Derivations for Example of Section 5

In this appendix we show that Assumptions 4.8 and 4.9 which are needed for consistency of the
MLE under correct specification hold for the example discussed in Section 5 (a score-driven location
model with Student’s t-distributed innovations).

It is straightforward to check that condition (i), (ii) and (iii) of Assumption 4.8 are satisfied
in this setting. Also, by the Cr-inequality of Loève (1977, p.157) we have that ng = min{nfu , nu}.
Thus, ng > 0, because fut can be set arbitrarily high by Proposition 3.1 under the conditions of
Assumption 4.9 and 0 < nu < infΘ∗ ν .

Finally, consider the conditions of Assumption 4.9. Defining the updating recursion of the
time-varying parameter in terms of ut and f̂ut as in equation (3.1), we obtain

f̂ut+1 = ω + α(1 + λ−1e−2κu2
t )
−1ut + βf̂ut ,

using that su,t = (1 + λ−1e−2κu2
t )ut . That condition (i) of Assumption 4.9 holds now follows

immediately because su,t is uniformly bounded. Also, because ∂su,t/∂f
u = 0, condition (ii) sim-

plifies to |β| < 1. The shaded area in Figure 1 represents (a part of) the (α, β)-pairs which meet
this restriction. Clearly, the parameter restriction |β| < 1 holds for all θ ∈ Θ∗. In other words,
the parameter restrictions we needed for filter invertibility are sufficient for the true time-varying
parameter to be SE. Assumption 4.9 also requires that for every (f,θ) ∈ Fs × Θ∗, the derivative
∂s(f, y, λ)/∂y 6= 0 for almost every y ∈ Yg. For this model, it is not hard to see that this holds
for every ν < ∞. Lastly, we must have α 6= 0 for all θ ∈ Θ∗. In other words, we can take some
compact Θ∗ ⊆ {θ ∈ R5 : |β| < 1 , α 6= 0, ν > 0} . Notice that essentially Assumption 4.9 does not
impose any further restrictions on the parameter region, except for the restriction α 6= 0 , which is
required for identification of the model.

Under correct specification, it now follows from Corollary 4.11 that for any compact parameter
set Θ ⊆ Θ∗ ∩ Θ∗, where Θ∗ and Θ∗ meet the requirements described above, the MLE θ̂T is
consistent.
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F Further Technical Lemmas and Proofs

This appendix contains a number of more technical results.

The following set of lemmas derives the bounds on the moments of the likelihood function based
on moments of the inputs. The results follow from the properties of moment preserving maps as
laid out in Technical Appendix G, but can also be proved directly.

Lemma TA.9. E supθ∈Θ |`′T (θ, f̂1)|m <∞ where

m = min

{
nλp̄ ,

n∇nfθ
n∇ + nfθ

}
. (F.1)

Proof. Using the explicit form of the first derivative of the likelihood in (D.2) in Technical Ap-
pendix D, the number of moments for the likelihood score is at least the minimum of the number
of moments for each of the terms making up the score, namely

∂p̄

∂θ
,

∂ft
∂θ
∇t.

The number of moments for the first term is nλp̄ . Using a generalized Hölder inequality, the second
term has moments n∇nfθ/(n∇ + nfθ). This yields the expression for m in equation (F.1).

Lemma TA.10. E supθ∈Θ |`′′T (θ, f)|m <∞ where

m = min

{
nλλp̄ ,

n∇nfθθ
n∇ + nfθθ

,
nλ∇nfθ
nλ∇ + nfθ

,
nf∇nfθ

2nf∇ + nfθ

}
. (F.2)

Proof. The statement follows by Hölder’s generalized inequality and from the explicit expression
for the second derivative of the likelihood in equation (D.3) in Technical Appendix D, we obtain
that the number of moments m is at least that of the minimum number of moments of the following
terms

∂2ft

∂θ∂θ>
∇t,

∂ft
∂θ

∂ft

∂θ>
∂∇t
∂ft

,
∂ft
∂θ

∂∇t
∂λ

,
∂2p̄t

∂θ∂θ>
.

Using generalized Hölder inequalities, the number of moments for each of these terms are, respec-
tively,

n∇nfθθ
n∇ + nfθθ

,
nf∇nfθ

2nf∇ + nfθ
,

nλ∇nfθ
nλ∇ + nfθ

, nλλp̄ .

This makes up the expression for m in equation (F.2).

The following lemmas support the proof of Theorem 4.15.

Lemma TA.11. Let the conditions of Theorem 4.15 hold. Then `′T
(
θ0) is a sample average of a

sequence that is SE and NED of size −1 on a strongly mixing sequence of size −δ/(1− δ) for some
δ > 2.
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Proof. By assumption, {yt}t∈Z satisfies E|yt|ny < ∞ for some ny ≥ 0 and is SE and NED of size
−1 on a strongly mixing process of size −δ/(1 − δ) for some δ > 2. Assumption 4.4 and the

moment conditions of Assumption 4.12 ensure that the limit process {f (0:1)
t (θ0)}t∈Z is both SE

(Propositions 3.3 and 3.5) and NED (Pötscher and Prucha (1997, Theorem 6.10)) of size −1 on the

strongly mixing process. The SE nature of the terms ˜̀′
t

(
yt,f

(0:1)
t (θ0);λ

)
that compose the score

`′T (θ0) =
1

T

T∑
t=1

˜̀′
t

(
θ0

)
=

1

T

T∑
t=1

∂ft(θ0)

∂θ
·A∗t +

∂p̄t
∂θ

follows immediately by Krengel’s theorem (Krengel (1985)) and the continuity of the score on

the SE processes {yt}t∈Z and {f (0:1)
t (θ0)}t∈Z. Finally, the NED nature of the terms in `′T

(
θ0) is

ensured by noting that Assumption 4.14 ensures that A∗t is uniformly bounded and A∗t and ∂p̄t
∂θ

are a.s. Lipschitz continuous, and hence that ˜̀′
t is Lipschitz continuous on (yt,f

(0:1)
t (θ0)), which

implies by Theorem 17.12 of Davidson (1994) or Theorem 6.15 of Pötscher and Prucha (1997) that
{˜̀′t
(
θ0

)
} is NED of size −1 on the mixing sequence.

Lemma TA.12. Under the conditions of Theorem 4.15,

√
T‖`′T

(
θ0, f̂

(0:1)
1 )− `′T

(
θ0)‖ a.s.→ 0 as T →∞. (F.3)

Proof. We establish the a.s. convergence in (F.3) by showing the e.a.s. convergence of the individual
contributions of the score of the log likelihood

‖˜̀′t
(
θ0, f̂

(0:1)
1

)
− ˜̀′

t

(
θ0

)
‖ e.a.s.→ 0 as T →∞.

This e.a.s. convergence follows from |f̂t − ft|
e.a.s.→ 0 and

‖ ˆ̂f
(1)

t (θ0, f̂
(0:1)
1 )− f (1)

t (θ0)‖ e.a.s.→ 0,

as implied by Propositions 3.3 and 3.5 respectively, which hold because of Assumptions 4.4 and

4.12. Now consider the expression of ˜̀′
t(θ0, f̂

(0:1)
1 ) given in (D.2) to rewrite the difference under

investigation:

‖˜̀′t
(
θ0,f

(0:1)
1 )− ˜̀′

t

(
θ0)‖ =

∥∥∥∥ ˆ̂f (1)

t (θ0,f
(0:1)
1 ) · ∇̂t +

∂ ˆ̄pt
∂θ
− f (1)

t (θ0) · ∇t −
∂p̄t
∂θ

∥∥∥∥
≤
∥∥∥∥ ˆ̂f (1)

t (θ0, f̂
(0:1)
1 ) · ∇̂t − f (1)

t (θ0) · ∇t
∥∥∥∥+

∥∥∥∥∂ ˆ̄pt
∂θ
− ∂p̄t
∂θ

∥∥∥∥ , (F.4)

where the quantities ∇̂t and ∂ ˆ̄pt
∂θ are based on f̂t(θ0, f̂1) and their analogues without hats are

based on ft(θ0) . Both terms can be shown to converge to zero e.a.s. by application of Lemma
2.1 in SM06. The first term also requires the application of Lemma TA.14. We just argued that

‖ ˆ̂f
(0:1)

t (θ0, f̂
(0:1)
1 ) − f (0:1)

t (θ0)‖ e.a.s.→ 0, meaning that each of the elements converge, and it follows
from Proposition 3.5 that the limit sequence is SE and has a bounded moment, as nfθ > 0. Also,
as ∇t is continuously differentiable in ft, it follows from the mean value theorem that∣∣∣∇̂t −∇t∣∣∣ ≤ sup

f

∣∣∣∣∂∇t∂f

∣∣∣∣ · |f̂t(θ0, f̂1)− ft(θ0)| e.a.s.→ 0 as t→∞ , (F.5)
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where it must be noted that ∇t only depends on ft and not on f
(1)
t . The convergence follows from

Lemma 2.1 in SM06 since {supf |∂∇t/∂f |}t∈N is SE with a logarithmic moment, because n̄f∇ > 0,
and because the second factor vanishes e.a.s. Note that {∇t}t∈Z is SE by the continuity of ∇t on
the SE sequence {yt, ft(·)}t∈Z and Proposition 4.2 in Krengel (1985), and has a bounded moment
because n̄∇ > 0 . So it follows from Lemma TA.14 that the first term of F.4 converges to zero e.a.s.

Next, we show that the second term of (F.4) vanishes e.a.s. by again invoking the mean value
theorem, which can be done because ∂p̄t/∂λ is continuously differentiable in f :∥∥∥∥∂ ˆ̄pt

∂λ
− ∂p̄t
∂λ

∥∥∥∥ ≤ sup
f

∣∣∣∣ ∂2p̄t
∂λ∂f

∣∣∣∣ · |f̂t(θ0, f̂1)− ft(θ0)| e.a.s.→ 0 as t→∞ ,

where the convergence again follows from Lemma 2.1 in SM06 because {supf
∣∣∂2p̄/∂λ∂f

∣∣}t∈N is

SE with a logarithmic moment, as n̄λfp̄ > 0 . This finishes the proof.

Lemma TA.13. Under the conditions of Theorem 4.15, supθ∈Θ ‖`′′T (θ, f̂
(0:2)
1 ) − `′′T (θ)‖ a.s.→ 0 as

t→∞.

Proof. The proof takes on a similar approach as the proof of Lemma TA.12. Again, instead of
considering the average log likelihood, we prove that the individual contributions of the Hessian of
the log likelihood vanish e.a.s.

sup
θ∈Θ
‖˜̀′′t (θ, f̂

(0:2)
1 )− ˜̀′′

t (θ)‖ .

Recall that

sup
θ∈Θ
‖ ˆ̂f

(0:2)

t − f (0:2)
t ‖ e.a.s.→ 0,

by Proposition 3.3 and 3.5 under the maintained assumptions, where the limit sequences are SE
and have a bounded moment. - Now consider the expression of the second derivative of the log
likelihood given in (D.3) to rewrite this difference:

sup
θ∈Θ
‖˜̀′′t (θ, f̂

(0:2)
1 )− ˜̀′′

t (θ)‖ ≤ sup
θ∈Θ

∥∥∥∥ ˆ̂f (2)

t · ∇̂t − f
(2)
t · ∇t

∥∥∥∥
+ sup
θ∈Θ

∥∥∥∥∥ ˆ̂f (1)

t

( ˆ̂f (1)

t

)> · ∂∇̂t
∂ft
− f (1)

t

(
f

(1)
t

)> · ∂∇t
∂ft

∥∥∥∥∥
+ sup
θ∈Θ

∥∥∥∥∥ ˆ̂f (1)

t ·
∂∇̂t
∂θ>

− f (1)
t ·

∂∇t
∂θ>

∥∥∥∥∥
+ sup
θ∈Θ

∥∥∥∥∥∂∇̂t∂θ
·
( ˆ̂f (1)

t

)> − ∂∇t
∂θ
·
(
f

(1)
t

)>∥∥∥∥∥
+ sup
θ∈Θ

∥∥∥∥ ∂2 ˆ̄pt

∂θ∂θ>
− ∂2p̄t

∂θ∂θ>

∥∥∥∥ ,

(F.6)

where all terms with hats are evaluated at elements of the initialized process { ˆ̂f
(0:2)

t } and all terms

without hats are evaluated in the SE limit process {f (0:2)
t }. Every term of (F.6) vanishes e.a.s. We

start by applying Corollary TA.16 to the first term, because we argued that supθ∈Θ ‖ ˆ̂f
(2)

t −f
(2)
t ‖

e.a.s.→
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0 , meaning that this convergence occurs for each element of f
(2)
t , where the limit process is SE and

has a bounded log moment, as nfθθ > 0 . Also, that

sup
θ∈Θ

∣∣∣∇̂t −∇t∣∣∣ e.a.s.→ 0 as t→∞ ,

can be shown using similar steps as in the proof of Lemma TA.12 in (F.5). Because the sequence

{supθ∈Θ supf |∂∇t/∂f |}t∈N is SE and has a log moment, because n̄f∇ > 0. It was also argued
that {∇t} is SE and has a bounded log moment uniformly over Θ. Thus, Corollary TA.16 can be
applied.

For the second term of (F.6), we note that

sup
θ∈Θ

∣∣∣∂f̂t
∂θi

∂f̂t
∂θj
− ∂ft
∂θi

∂ft
∂θj

∣∣∣ e.a.s.→ 0 as t→∞ ,

by Corollary TA.16, because we argued above that supθ∈Θ ‖ ˆ̂f
(1)

t − f
(1)
t ‖

e.a.s.→ 0 , where the limit
process is SE and has some bounded moment nfθ > 0 . The convergence to zero of the second term
of of (F.6) now follows from a second application of Corollary TA.16, because by the mean value
theorem we have

sup
θ∈Θ

∥∥∥∥∥∂∇̂t∂f
− ∂∇t

∂f

∥∥∥∥∥ ≤ sup
θ∈Θ

sup
f

∣∣∣∣∂2∇t
∂f2

∣∣∣∣ · sup
θ∈Θ
|f̂t − ft|

e.a.s.→ 0 as t→∞ ,

where the convergence to zero follows from Lemma 2.1 in SM06 because {supθ∈Θ supf |∂2∇t/∂f2|}t∈N
is SE and has a bounded log moment because n̄ff∇ > 0 by assumption. Thus, the result follows

from Corollary TA.16, because {∂∇t/∂f}t∈N is SE and has a bounded log moment as n̄f∇ > 0 .
For the remaining three terms of (F.6) the convergence result follows by taking exactly the

same steps, so we omit a detailed derivation. Note that the necessary moment conditions that
correspond to the third and fourth term are nf > 0, nfθ > 0, n̄λf∇ > 0 and nλ∇ > 0 and for the fifth

term it is n̄λλfp̄ > 0 . By assumption all these moment conditions hold.

Lemma TA.14. Let {x̂t(θ, x̄)}t∈N and {x̂t(θ, x̄)}t∈N be sequences that converge e.a.s. to their SE
limits {xt(θ)}t∈Z and {xt(θ)}t∈Z, respectively, i.e.,

|x̂t(θ, x̄)− xt(θ)| e.a.s.→ 0, |x̂t(θ, x̄)− xt(θ)| e.a.s.→ 0 as t→∞.

Let E log |xt(θ)| <∞ and E log |xt(θ)| <∞. Then

|x̂t(θ, x̄)x̂t(θ, x̄)− xt(θ)xt(θ)| e.a.s.→ 0 as t→∞.

Proof. We have

|x̂t(θ, x̄)x̂t(θ, x̄)− xt(θ)xt(θ)|
= |x̂t(θ, x̄)x̂t(θ, x̄)− x̂t(θ, x̄)xt(θ) + x̂t(θ, x̄)xt(θ)− xt(θ)xt(θ)|
≤ |x̂t(θ, x̄)| · |x̂t(θ, x̄)− xt(θ)|+ |x̂t(θ, x̄)− xt(θ)| · |xt(θ)|
≤ |x̂t(θ, x̄)− xt(θ) + xt(θ)| · |x̂t(θ, x̄)− xt(θ)|+
|x̂t(θ, x̄)− xt(θ)| · |xt(θ)|

≤ |x̂t(θ, x̄)− xt(θ)| · |x̂t(θ, x̄)− xt(θ)|+
|xt(θ)| · |x̂t(θ, x̄)− xt(θ)|+
|x̂t(θ, x̄)− xt(θ)| · |xt(θ)|
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The first term goes to zero e.a.s. due to the e.a.s. convergence of {x̂t(θ, x̄)}t∈N and {x̂t(θ, x̄)}t∈N to
{xt(θ)}t∈Z and {xt(θ)}t∈Z, respectively. The second and third term go to zero due to Lemma 2.1
in SM06 the e.a.s. convergence of {x̂t(θ, x̄)}t∈N and {x̂t(θ, x̄)}t∈N, and the SE nature and existence
of a log moment for both xt(θ) and xt(θ).

Corollary TA.15. Let {x̂t(θ, x̄)}t∈N be a sequence initialized at x̄ that converges e.a.s. to an SE
limit sequence {xt(θ)}t∈Z, i.e.,

|x̂t(θ, x̄)− xt(θ)| e.a.s.→ 0 as t→∞.

Let E log |xt(θ)| <∞. Then

|x̂t(θ, x̄)2 − xt(θ)2| e.a.s.→ 0 as t→∞.

Proof. The result in this corollary follows immediately from Lemma TA.14.

Corollary TA.16. Let {x̂t(θ, x̄)}t∈N and {x̂t(θ, x̄)}t∈N be sequences that converges e.a.s. to their
SE limits {xt(θ)}t∈Z and {xt(θ)}t∈Z, respectively, uniformly over some set Θ i.e.,

sup
θ∈Θ
|x̂t(θ, x̄)− xt(θ)| e.a.s.→ 0, sup

θ∈Θ
|x̂t(θ, x̄)− xt(θ)| e.a.s.→ 0 as t→∞.

Let E supθ∈Θ log |xt(θ)| <∞ and E supθ∈Θ log |xt(θ)| <∞. Then

sup
θ∈Θ
|x̂t(θ, x̄)x̂t(θ, x̄)− xt(θ)xt(θ)| e.a.s.→ 0 as t→∞.

Proof. This corollary can be proved using exactly the same steps as the proof of Lemma TA.14.
The proof makes use of the subadditivity of the supremum and the fact that {supθ∈Θ |xt(θ)|}t∈N
and {supθ∈Θ |xt(θ)|}t∈N are SE sequences.

Lemma TA.17. Let A
(2)
t (θ, f̂

(0:1)
1 ) be as defined in (D.6) and evaluated at the initialized series

for f̂t(θ, f̂1) and ˆ̂f
(1)

t (θ, f̂
(0:1)
1 ). Similarly, let A

(2)
t (θ) denote the same quantity evaluated at the SE

limits ft(θ) and f
(1)
t (θ). Then under the conditions of Proposition 3.5, we have

sup
θ∈Θ
|A(2)

t (θ, f̂
(0:1)
1 )−A(2)

t (θ)| e.a.s.→ 0.

Proof. Under the conditions of Proposition 3.5 it was already shown that supθ∈Θ |f̂t − ft|
e.a.s.→ 0

and supθ∈Θ ‖ ˆ̂f
(1)

t −f
(1)
t ‖

e.a.s.→ 0 . The expression for A
(2)
t in (D.6) has three different types of terms.

Type I : The terms
∂α

∂θ

∂st

∂θ>
, α

∂2st

∂θ∂θ>
,

∂β

∂θ

∂ft

∂θ>
.

These terms for supθ∈Θ |A
(2)
t (θ, f̂

(0:1)
1 )−A(2)

t (θ)| converge e.a.s. to zero.
The first term follows by noting that ∂α/∂θ is constant, and

sup
θ∈Θ

∣∣∣∣∣∂st
(
f̂t
)

∂θ
−
∂st
(
ft
)

∂θ

∣∣∣∣∣ ≤ sup
f∗

sup
θ∈Θ

∣∣∣∂2st(f
∗)

∂f∂θ

∣∣∣× sup
θ∈Θ

∣∣ft − f̂t∣∣. (F.7)
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The result now follows from Lemma 2.1 in SM06 due to the e.a.s. convergence f̂t
e.a.s.→ ft uniformly

over Θ, the SE nature of the term involving the supf∗ , and the existence of a small positive moment
for the supf∗ , which implies the existence of a log moment. The e.a.s. convergence for the second
term follows by a similar argument.

The third term follows directly from the e.a.s. convergence ˆ̂f
(1)

t
e.a.s.→ f

(1)
t uniformly over Θ.

Type II : The terms
∂α

∂θ

∂st
∂ft

∂ft

∂θ>
, α

∂2st
∂θ∂ft

∂ft

∂θ>
.

Both terms follow by a similar argument as the first set of terms, combined with Corollary TA.16.
For instance for the first term, we have ∂α/∂θ is constant, and

∂st
(
f̂t
)

∂ft

e.a.s.→
∂st
(
ft
)

∂ft
(F.8)

uniformly over Θ, given the arguments under terms of Type I. Given the uniform e.a.s. convergence

of both ∂st(f̂)/∂ft and ˆ̂f
(1)

t , the results follow directly from Corollary TA.16.

Type III : The term

α
∂2st
∂f2

t

∂ft
∂θ

∂ft

∂θ>
.

The uniform e.a.s. convergence of each of the elements in (∂f̂t/θ)(∂f̂t/θ
>) follows from Corollary

TA.16 given a log moment for each of the elements of ∂ft/θ, which is implied by nfθ > 0. Note
that the latter also implies a log moment for (∂ft/θ)(∂ft/θ

>). Next, we have by the mean value
theorem that

sup
θ∈Θ

∣∣∣∂2st
(
f̂t
)

∂f2
t

−
∂2st

(
ft
)

∂f2
t

∣∣∣ ≤ sup
f∗

sup
θ∈Θ

∣∣∣∂3st(f
∗)

∂f3
t

∣∣∣× sup
θ∈Θ

∣∣f̂t − ft∣∣ e.a.s.→ 0 .

The existence of a log moment for supf∗ supθ∈Θ |∂3st/∂f
3
t | is implied by n̄fffs > 0. This again

implies the uniform e.a.s. convergence of ∂2st/∂f
2
t via Lemma 2.1 in SM06. Also note that

{∂2st
(
ft
)
/∂f2

t } is SE and has a bounded log moment, because n̄ffs > 0. So the final result follows

by applying Corollary TA.16 to {∂2st
(
ft
)
/∂f2

t } and each of the elements of {(∂ft/θ)(∂ft/θ
>)}.
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G More Results on Moment Preserving Functions

Checking the moment conditions needed for a number of the propositions and theorems based
on low-level conditions can be considerably simplified by working with the concept of moment
preserving maps.

The final technical lemma presented below provides simple moment preserving properties for
several common functions of random variables. For notational simplicity we let h(k) denote the kth
order derivative of a function h. The moment properties on h or h(k) can now easily be derived
from moment conditions on the inputs of h and the moment preserving properties through its
membership of the set MΘ,Θ(n,m).

Lemma TA.18. (Catalog of Mk
Θ,Θ(n,m) Moment Preserving Maps) For every θ ∈ Θ, let h(·;θ) :

X → R and w(·, ·,θ) : X × V → R be measurable functions.

(a) Let h(·;θ) be an affine function,

h(x;θ) = θ0 + θ1x ∀ (x,θ) ∈ X ×Θ, θ = (θ0, θ1) ∈ Θ ⊆ R2.

Then, h(·;θ) ∈ MΘ,θ(n,m) with n = m ∀ θ ∈ Θ, and h(k)(·;θ) ∈ MΘ,θ(n,m) for all
(θ, n,m, k) ∈ Θ×R+

0 ×R+
0 ×N. If Θ is compact, then h ∈Mk

Θ,Θ(n,m) with n = m for k = 0

and h(k)(·;θ) ∈MΘ,Θ(n,m) ∀ (n,m, k) ∈ R+
0 × R+

0 × N.

(b) Let h(·;θ) be a polynomial function,

h(x;θ) =

J∑
j=0

θjx
j ∀ (x,θ) ∈ X ×Θ, θ = (θ0, . . . , θJ) ∈ Θ ⊆ RJ , J ≥ 1.

Then h(k)(·;θ) ∈ MΘ,θ(n,m) with m = n/(J − k) ∀ (k,θ) ∈ N0 × Θ. If Θ is compact, then
h(k) ∈MΘ,Θ(n,m) with m = n/(J − k) ∀ k ∈ N0.

(c) Let

h(x;θ) =

J∑
j=0

θjx
rj ∀ (x,θ) ∈ X ×Θ,θ = (θ0, . . . , θJ) ∈ Θ ⊆ RJ ,

where rj ≥ 0. Then h(k)(·;θ) ∈ MΘ,θ(n,m) with m = n/(maxj rj − k) ∀ (θ, k) ∈ Θ ∈ N0 :
k ≤ minj rj. If Θ is compact, then h(k) ∈ MΘ,Θ(n,m) with m = n/(maxj rj − k) ∀ k ∈ N0 :
k ≤ minj rj.

(d) Let
sup
x∈X
|h(x;θ)| ≤ h̄(θ) <∞ ∀ θ ∈ Θ.

Then h(·;θ) ∈MΘ,θ(n,m) ∀ (n,m,θ) ∈ Θ×R+
0 ×R

+
0 . If additionally, supθ∈Θ h̄(θ) ≤ ¯̄h <∞,

then h ∈MΘ,Θ(n,m) ∀ (n,m) ∈ R+
0 × R+

0 .

(e) Let
h(·;θ) ∈ Ck(X )

and
sup
x∈X
|h(k)(x;θ)| ≤ h̄k(θ) <∞ ∀ θ ∈ Θ.

Then h(k)(·;θ) ∈MΘ,θ(n,m) with m = n/k ∀ θ ∈ Θ. If furthermore, supθ∈Θ h̄k(θ) ≤ ¯̄h <∞
, then h(k) ∈MΘ,Θ(n,m) with m = n/k.
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(f) Let
w(x, v;θ) = θ0 + θ1x+ θ2v, (θ0, θ1, θ2, x, v) ∈ R3 ×X × V.

Then w(kx,kv)(·, ·,θ) ∈ MΘ,θ(n,m) ∀ (kx, kv,θ) ∈ N0 × N0 × Θ with n = (nx, nv) and m =
min{nx, nv}. If furthermore Θ is compact, then

w(kx,kv) ∈MΘ,Θ(n,m) ∀ (kx, kv) ∈ N0 × N0,

with m = min{nx, nv};

(g) If
w(x, v,θ) = θ0 + θ1xv, (θ0, θ1) ∈ R2,

then w(kx,kv)(·, ·,θ) ∈ MΘ,θ(n,m) ∀ (kx, kv,θ) ∈ N0 × N0 × Θ with n = (nx, nv) where
m = nxnv/(nx + nv). If furthermore, Θ is compact, then

w(kx,kv) ∈MΘ,Θ(n,m) ∀ (kx, kv) ∈ N0 × N0,

with n = (nx, nv) where m = nxnv/(nx + nv).

Proof.
Part (a): By the Cr-inequality in (Loève, 1977, p.157), for (a) we have for some c that

E|h(xt(θ);θ)|n = E|θ0 + θ1xt(θ)|n

≤ cE|θ0|n + cE|θ1xt(θ)|n

≤ c|θ0|n + c|θ1|nE|xt(θ)|n,

and hence, h(·;θ) ∈MΘ,θ(n,m) with n = m ∀ θ ∈ Θ because

E sup
θ∈Θ
|xt(θ)|n <∞⇒ E|xt(θ)|n <∞ ∀ θ ∈ Θ⇒ E|h(xt(θ);θ)|n <∞ ∀ θ ∈ Θ.

Also, h(k)(·;θ) ∈ MΘ,θ(n,m) ∀ (m,n, k,θ) ∈ R+
0 × R+

0 × N × Θ as h(1)(xt(θ),θ) = θ1 and
h(i)(xt(θ),θ) = 0 ∀ i ≥ 2. Furthermore,

E sup
θ∈Θ
|h(xt(θ);θ)|n = E sup

θ∈Θ
|θ0 + θ1xt(θ)|n

≤ c E sup
θ∈Θ
|θ0|n + c E sup

θ∈Θ
|θ1xt(θ)|n

≤ c sup
θ∈Θ
|θ0|n + c sup

θ∈Θ
|θ1|nE sup

θ∈Θ
|xt(θ)|n,

and as a result, if Θ is compact, we have h ∈ MΘ,Θ(n,m) with n = m because supθ∈Θ |θ0|n <
∞ and supθ∈Θ |θ1|n < ∞, and hence, E supθ∈Θ |xt(θ)|n < ∞ ⇒ E supθ∈Θ |h (xt(θ);θ)|n < ∞.
Again, h(k) ∈ MΘ,Θ(n,m) ∀ (m,n, k) ∈ R+

0 × R+
0 × N follows from having h(1)(xt(θ),θ) = θ1 and

h(i)(xt(θ),θ) = 0 ∀ i ≥ 2.

Part (b): We have that for some c

E|h(xt(θ);θ)|n = E|
J∑
j=0

θjx
j
t (θ)|n ≤ c

J∑
j=0

E|θjxjt (θ)|n

≤ c
J∑
j=0

|θj |nE|xt(θ)|jn,
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and hence, h(·;θ) ∈MΘ,θ(n,m) with m = n/J ∀ θ ∈ Θ because

E supθ∈Θ |xt(θ)|n <∞⇒
E|xt(θ)|n <∞ ∀ θ ∈ Θ⇒

E|h(xt(θ);θ)|n/J ≤ c
∑J

j=0 |θj |nE|xt(θ)j |n/J ≤ c · J · E|xt(θ)|n <∞ ∀ θ ∈ Θ.

Also, h(k)(·;θ) ∈MΘ,θ(n,m) ∀ (k,θ) ∈ N0 ×Θ with m = n/(J − k), because

h(k)(xt(θ),θ) =
J∑
j=k

θ∗jx
j−k

and hence

E supθ∈Θ |xt(θ)|n <∞⇒
E|xt(θ)|n <∞ ∀ θ ∈ Θ⇒

E|h(k)(xt(θ);θ)|n/(J−k) ≤ c
∑J

j=0 E|θ∗jxt(θ)j−k|n/(J−k)

≤ c
∑J

j=0 |θ∗j |n/(J−k)E|xt(θ)|n <∞ ∀ θ ∈ Θ.

Furthermore,

E sup
θ∈Θ
|h(xt(θ);θ)|n = E sup

θ∈Θ
|
J∑
j=0

θjx
j
t (θ)|n

≤ c

J∑
j=0

E sup
θ∈Θ
|θjxjt (θ)|n

≤ c
J∑
j=0

sup
θ∈Θ
|θj |nE sup

θ∈Θ
|xt(θ)|jn,

and hence, if Θ is compact, we have h(·;θ) ∈MΘ,Θ(n,m) with m = n/J because

E sup
θ∈Θ
|xt(θ)|n <∞⇒ E sup

θ∈Θ
|h(xt(θ);θ)|n/J <∞.

and h(k)(·;θ) ∈MΘ,Θ(n,m) with n = m/(J − k) ∀ (θ, k) ∈ Θ× N0 because

E sup
θ∈Θ
|xt(θ)|n <∞⇒ E sup

θ∈Θ
|h(k)(xt(θ);θ)|n/(J−k) <∞

by the same argument.

Part (c): For some c,

E|h(xt(θ);θ)|n = E|
J∑
j=0

θjx
rj
t (θ)|n

≤ c
J∑
j=0

E|θjx
rj
t (θ)|n

≤ c
J∑
j=0

|θj |nE|xt(θ)|rjn.
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Hence, h(·;θ) ∈MΘ,θ(n,m) with m = n/maxj rj ∀ θ ∈ Θ because

E supθ∈Θ |xt(θ)|n <∞⇒
E|xt(θ)|n <∞ ∀ θ ∈ Θ⇒

E|h(xt(θ);θ)|n/maxj rj ≤ c
∑J

j=0 |θj |nE|xt(θ)|rjn/maxj rj <∞ ∀ θ ∈ Θ.

Similarly, h(k)(·;θ) ∈ MΘ,θ(n,m) with m = n/(maxj rj − k) ∀ (θ, k) ∈ Θ × N0 : k ≤ minj rj ,
because we have

E|h(k)(xt(θ);θ)|n = E|
J∑
j=0

θ∗jx
rj−k
t (θ)|n

≤ c
J∑
j=0

E|θ∗jx
rj−k
t (θ)|n

≤ c

J∑
j=0

|θ∗j |nE|xt(θ)|(rj−k)n,

and hence it follows that

E supθ∈Θ |xt(θ)|n <∞⇒
E|xt(θ)|n <∞ ∀ θ ∈ Θ⇒

E|h(k)(xt(θ);θ)|n/(maxj rj) ≤ c
∑J

j=0 |θ∗j |nE|xt(θ)|(rj−k)n/(maxj rj−k) <∞.

Furthermore,

E sup
θ∈Θ
|h(xt(θ);θ)|n = E sup

θ∈Θ
|
J∑
j=0

θjx
rj
t (θ)|n

≤ c ×
J∑
j=0

E sup
θ∈Θ
|θjx

rj
t (θ)|n ≤ c

J∑
j=0

sup
θ∈Θ
|θj |nE sup

θ∈Θ
|xt(θ)|rjn.

Hence, if Θ is compact, we have h ∈MΘ,Θ(n,m) withm = n/maxj rj because supθ∈Θ |θj |n <∞∀ j,
and hence it follows that

E sup
θ∈Θ
|xt(θ)|n <∞⇒ E sup

θ∈Θ
|h(xt(θ);θ)|n/maxj rj <∞.

Similarly, we have h(k) ∈MΘ,Θ(n,m) with m = n/maxj(rj − k) because we have

E sup
θ∈Θ
|xt(θ)|n <∞⇒ E sup

θ∈Θ
|h(xt(θ);θ)|n/(maxj rj−k) <∞

by the same argument.

Part (d): We have that

h(xt(θ);θ) ≤ h̄(θ) ∀ θ ∈ Θ⇒
E|h(xt(θ);θ)|n ≤ h̄(θ)n ∀ (θ, n) ∈ Θ× R+

0 ,

and hence, h(·;θ) ∈MΘ,θ(n,m)∀ (n,m,θ) ∈ Θ× R+
0 × R+

0 because

E supθ∈Θ |xt(θ)|n <∞⇒
E|h(xt(θ);θ)|m ≤ h̄(θ)m <∞ ∀ (n,m,θ) ∈ Θ× R+

0 × R+
0 .
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Furthermore, if supθ∈Θ h̄(θ) ≤ ¯̄h, then

E sup
θ∈Θ
|h(xt(θ);θ)|n ≤ E sup

θ∈Θ
h̄(θ)n ∀ n ∈ R+

0 .

Hence, h ∈MΘ,Θ(n,m)∀ (n,m) ∈ R+
0 × R+

0 as

E supθ∈Θ |xt(θ)|n <∞⇒
supθ∈Θ E|h(xt(θ);θ)|m ≤ supθ∈Θ h̄(θ)m ≤ ¯̄hm <∞ ∀ (n,m) ∈ R+

0 × R+
0 .

Part (e): We have for some c and by an exact kth-order Taylor expansion around a point x ∈ int(X )
that

E|h(xt(θ);θ)|n ≤ E|
k∑
j=0

θjx
j
t (θ)|n

≤ c
J∑
j=0

E|θjxjt (θ)|n

≤ c

J∑
j=0

|θj |nE|xt(θ)|jn,

where ∞ > θk ≥ h̄k(θ) ≥ supx∈X |h(k)(xθ)| ∀ θ ∈ Θ, and hence, h(·;θ) ∈ MΘ,θ(n,m) with
m = n/k ∀ θ ∈ Θ because

E supθ∈Θ |xt(θ)|n <∞⇒
E|xt(θ)|n <∞ ∀ θ ∈ Θ⇒

E|h(xt(θ);θ)|n/k ≤ c
∑J

j=0 |θj |nE|xt(θ)|jn/k <∞ ∀ θ ∈ Θ.

Furthermore,

E sup
θ∈Θ
|h(xt(θ);θ)|n = E sup

θ∈Θ
|
J∑
j=0

θjx
j
t (θ)|n

≤ c
J∑
j=0

E sup
θ∈Θ
|θj × xjt (θ)|n

≤ c
J∑
j=0

sup
θ∈Θ
|θj |nE sup

θ∈Θ
|xt(θ)|jn,

and hence, if Θ is compact, we have h(·;θ) ∈ MΘ,Θ(n,m) with m = n/k because supθ∈Θ |θj |n <
∞ ∀ j, and hence,

E sup
θ∈Θ
|xt(θ)|n <∞⇒ E sup

θ∈Θ
|h(xt(θ);θ)|n/k <∞

by a similar argument.

Part (f): We have for some c that

E|w(xt(θ), vt;θ)|n = E|θ0 + θ1xt(θ) + θ2vt|n

≤ |θ0|n + |θ1|nE|xt(θ)|n + |θ2|nE|vt|n.
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Hence, w(kx,kv) ∈MΘ,θ(n,m)∀ (kx, kv) ∈ N0×N0 with n = (nx, nv) and m = min{nx, nv} because

E supθ∈Θ |xt(θ)|nx <∞ ∧ E supθ∈Θ |vt|nv <∞⇒
E|xt(θ)|nx <∞ ∧ E|vt|nv <∞

implies

E|w(xt(θ), vt;θ)|min{nx,nv} ≤ |θ0|min{nx,nv} + |θ1|min{nx,nv}E|xt(θ)|min{nx,nv} +

|θ2|min{nx,nv}E|vt|min{nx,nv} <∞

and E|w(1,0)(xt(θ), vt;θ)|min{nx,nv} = |θ1|n <∞. Similarly for v we have

E|w(0,1)(xt(θ), vt;θ)|min{nx,nv} = |θ2|n <∞,

and for any derivative we have

E|w(kx,kv)(xt(θ), vt;θ)|min{nx,nv} = 0 <∞ ∀ (kx, kv) : kx + kv > 1.

Furthermore, if Θ is compact, then

E sup
θ∈Θ

|w(xt(θ), vt;θ)|n = E sup
θ∈Θ

|θ0 + θ1xt(θ) + θ2vt|n

≤ sup
θ∈Θ
|θ0|n + sup

θ∈Θ
|θ1|nE sup

θ∈Θ
|xt(θ)|n +

sup
θ∈Θ
|θ2|nE sup

θ∈Θ
|vt|n,

and hence, w(kx,kv) ∈ MΘ,Θ(n,m) ∀ (kx, kv) ∈ N0 × N0 with n = (nx, nv) and m = min{nx, nv}
because

E sup
θ∈Θ
|xt(θ)|nx<∞ ∧ E sup

θ∈Θ
|vt|nv <∞

implies by a similar argument the bound

E sup
θ∈Θ
|w(kx,kv)(xt(θ), vt;θ)|min{n1,n2} <∞.

Part (g): We have E|w(xt(θ), vt;θ)|n < ∞ if and only if (E|w(xt(θ), vt; θ)|n)1/n < ∞. By the
generalized Hölder’s inequality

(E|w(xt(θ), vt;θ)|n)1/n = (E|θ0 + θ1xt(θ)vt|n)1/n

≤ |θ0|+ |θ1|(E|xt(θ)vt|n)1/n

≤ |θ0|+ |θ1|(E|xt(θ)|r)1/r(E|vt|s)1/s,

with 1/r + 1/s = 1/n, and hence, w(kx,kv) ∈MΘ,θ(n,m) ∀ (kx, kv) ∈ N0 × N0 with n = (nx, nv) if

1/m = 1/nx + 1/nv ⇔ m = nxnv/(nx + nv),

because then
E sup
θ∈Θ
|xt(θ)|nx <∞ ∧ E sup

θ∈Θ
|vt|nv <∞,

which implies

E|xt(θ)|nx <∞ ∧ E|vt|nv <∞⇒ E|w(xt(θ), vt;θ)|
nxnv
nx+nv <∞.
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Furthermore, if Θ is compact, then

E sup
θ∈Θ
|w(xt(θ), vt;θ)|n <∞

if and only if
(E sup

θ∈Θ
|w(xt(θ), vt;θ)|n)1/n <∞,

and since we have

(E sup
θ∈Θ
|w(xt(θ), vt;θ)|n)1/n = (E sup

θ∈Θ
|θ0 + θ1xt(θ)vt|n)1/n

≤ sup
θ∈Θ
|θ0|+ sup

θ∈Θ
|θ1|(E sup

θ∈Θ
|xt(θ)vt|n)1/n

≤ sup
θ∈Θ
|θ0|+ sup

θ∈Θ
|θ1|(E sup

θ∈Θ
|xt(θ)|r)1/r(E sup

θ∈Θ
|vt|s)1/s,

with r and s satisfying 1/r+1/s = 1/n by the generalized Hölder’s inequality, and hence, w(kx,kv) ∈
MΘ,Θ(n,m) ∀ (kx, kv) ∈ N0×N0 with n = (nx, nv) if m = nxnv/(nx+nv) by a similar argument.
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