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1 Introduction

We study the asymptotic properties of the maximum likelihood estimator for score-driven

time series models as introduced by Creal et al. (2011, 2013) and Harvey (2013). We specify

the score-driven model as

yt = g(ft, ut), ut ∼ pu(ut;λ), ft+1 = ω + α st + βft,

st = St · ∇t, ∇t = ∂ log py(yt|ft;λ)/∂ft,
(1.1)

where yt denotes the observed data, g(·, ·) is a link function that is strictly increasing in

its second argument, ft is a stochastic time-varying parameter that indexes the predictive

conditional density py of the data yt, ut is an independent and identically distributed (i.i.d.)

innovation with density pu, λ is the static parameter vector that indexes pu, ω, α and β

are fixed unknown parameters, st is the scaled score function using scaling function St :=

S(ft;λ), and∇t is the score (i.e. the derivative of the log) of the predictive conditional density

py(yt|ft;λ) with respect to ft. The conditional (on ft) density py is implied by the innovation

density pu and the link function g. We gather the static parameters in a parameter vector

θ> = (ω, α, β, λ>), where > denotes the transpose of a vector or matrix. We estimate θ by

the method of maximum likelihood (ML).

The class of score-driven time series models encompasses many well-known time-varying

parameter models from the literature. Additionally, it has given rise to a new strand of liter-

ature on successful empirical models in economics and finance. Traditional models contained

in the score-driven class include the generalized autoregressive conditional heteroskedastic-

ity (GARCH) model of Engle (1982) and Bollerslev (1986), the autoregressive conditional

duration (ACD) model of Engle and Russell (1998), the multiplicative error model (MEM)

of Engle (2002), and many more. Among the wide range of new successful empirical models,

we have the dynamic models for location and scale of fat-tailed data (Harvey and Luati,

2014), mixed measurement dynamic factor structures (Creal et al., 2014), dynamic mod-

els for multivariate count data (Koopman et al., 2018; Babii et al., 2019), dynamic spatial

processes (Blasques et al., 2016; Catania and Billé, 2017), dynamic tail indices (Massacci,

2016), and dynamic copulas, both with short-memory dynamics (Creal et al., 2011; Lucas

et al., 2014, 2017), long-memory dynamics (Janus et al., 2014), factor structures (Oh and

Patton, 2018), and with realized measures as inputs (De Lira Salvatierra and Patton, 2015;

Opschoor et al., 2018).

Despite this range of new empirical models with score-driven dynamics, few general the-

oretical results are available for the asymptotic properties of maximum likelihood estimators

in such models. The main complication lies in the nonlinearity of the updating equation
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(1.1) in score-driven models. In this paper, we aim to fill this gap by deriving new asymp-

totic results for the maximum likelihood estimator that are applicable to a wide class of

score-driven models.

A distinguishing feature of score-driven time series models is the use of the scaled score st

in the transition equation for ft+1 in (1.1). This makes the model observation-driven in the

classification of Cox (1981). Therefore, maximum likelihood estimation of static parameters

can be achieved via a prediction error decomposition. In particular, we can express the

likelihood function in closed-form, which significantly reduces the computational burden.

Blasques et al. (2015) show that score-driven models have unique optimality properties in

terms of approximating the unknown sequence of conditional densities py(yt|ft;λ), even

when the model is misspecified. Relatedly, Koopman et al. (2016) show that score-driven

time-varying parameter models produce similar forecasting precision as parameter-driven

state-space models, even if the latter constitute the true DGP.

Our asymptotic results for the maximum likelihood estimator have a number of dis-

tinctive features compared to earlier theoretical contributions on observation-driven and in

particular score-driven time series models. First, the asymptotic properties that we derive

for the maximum likelihood estimator (MLE) are global. For example, we provide a global

identification result for score-driven models in terms of low-level conditions. This new result

differs from the existing literature that typically relies on high-level assumptions and only

ensures local identification by imposing invertibility conditions on the information matrix

at the true parameter value; see, for example, Straumann and Mikosch (2006), Meitz and

Saikkonen (2011) and Harvey (2013). Second, we formulate primitive low-level conditions

in terms of the basic structure of the model. For instance, we obtain the required moments

of the likelihood function directly from assumptions concerning the properties of the basic

building blocks of the model in (1.1), such as the shape of the density function py. The use of

primitive conditions is typically helpful for empirical researchers who want to establish the

asymptotic properties of the MLE for their own model. We are able to obtain low-level con-

ditions by adapting Theorem 3.1 in Bougerol (1993). The adapted theorem delivers the strict

stationarity and ergodicity of stochastic sequences and also produces bounded moments for

the filter. Third, we follow Straumann and Mikosch (2006) in making use of Theorem 3.1 in

Bougerol (1993) and the ergodic theorem in Rao (1962) for strictly stationary and ergodic

sequences on separable Banach spaces. Based on these results, we establish the invertibility

of the score filter and we obtain asymptotic results under weaker differentiability conditions

than the existing literature on MLE for score-driven models. Finally, we explore consistency

and asymptotic normality results for both well-specified and misspecified models. These
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results also extend the literature for score-driven models, which thus far focusses only on the

correctly specified case. By allowing for model misspecification, we ‘align’ the asymptotic

estimation theory for score-driven models with the existing information-theoretic optimality

results of Blasques et al. (2015).

The theory developed here allows us to establish results for a much wider range of score-

driven models than studied in current literature, such as models with fat-tailed log-likelihoods

and uniformly bounded third order derivatives; see, for example, Harvey (2013), Harvey and

Luati (2014), Caivano and Harvey (2014), and Ryoko (2016). In particular, we emphasize

that by establishing the invertibility of the score-driven filter, our asymptotic results stand

in sharp contrast to existing results on score-driven models that do not ensure invertibility;

see also Andres and Harvey (2012) and Harvey and Lange (2015a,b). The importance

of filter invertibility for consistency of the MLE has been underlined in Straumann and

Mikosch (2006), Wintenberger (2013), and Blasques et al. (2018), among others. Without

invertibility, the existing asymptotic results on score-driven models must implicitly assume

that the initial value of the true stochastic time-varying parameter, f1, is random and known

exactly, while the remaining sequence {ft}t≥2 is unobserved. This seems highly unrealistic

and unsatisfactory.

The lack of theoretical results for the MLE in score-driven models also stands in sharp

contrast to the large number of results available for GARCH models. We do not attempt to

review that literature here; for good overviews, see for instance Straumann (2005) or Francq

and Zaköıan (2010). The main cause for the limited theoretical progress for score-driven

models lies in their complex nonlinear dynamic structure compared to common GARCH

models. This results in new theoretical challenges and puzzles. The analysis of score-driven

models also provides a different perspective from the standard literature: the characteristics

of the likelihood function (based on the conditional density py) in a score-driven model hinge

directly together with the dynamic properties of the stochastic time-varying parameter (via

the use of the score ∂ log py/∂ft in the transition equation (1.1) for ft). This provides a close

link between the two that departs from most of the literature, where the properties of the

likelihood function and those of the time-varying parameter can be dealt with separately.

The notation in the remainder of this paper is at times involved. Therefore, we illustrate

all steps by a sufficiently tractable leading example, namely the Student’s t conditional

volatility model introduced in Creal et al. (2011, 2013). By illustrating all details using

this example, we keep the exposition focused. The application of the theory is, however,

not limited to this particular case. Additional illustrations include various nonlinear and

non-Gaussian models that have been referred to in the discussion above. In particular, we
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work out a second example in detail in Section 5.

The remainder of the paper is organized as follows. In Section 2 the general modeling

framework is presented. In Section 3 we obtain stationarity, ergodicity, invertibility, and

bounded moments of filtered score-driven sequences using primitive conditions. In Section 4

we prove our results on global identification, consistency, and asymptotic normality of the

MLE. Section 5 provides a detailed application of the results to a fat-tailed score-driven

time-varying location model. Concluding remarks can be found in Section 6. The proofs of

the main theorems are collected in the Appendix. More technical material is relegated to

the Technical Appendix.

2 The General Framework

We develop our asymptotic framework for the score-driven time-varying parameter model

in (1.1) in terms of its two main building blocks: the innovation density pu and the link

function g. The conditional data density py is implied by pu and g as follows

py
(
yt
∣∣ ft ; λ

)
= pu

(
ḡ(ft, yt) ; λ

)
· ḡ′(ft, yt), (2.1)

where all variables are introduced below (1.1), and where

ḡt := ḡ(ft, yt) := g−1(ft, yt), ḡ′t := ḡ′(ft, yt) := ∂ḡ(ft, y)/∂y|y=yt ,

are the inverse of g(ft, ut) with respect to its second argument, ut, and the Jacobian of the

transformation, respectively. We assume yt ∈ Y ⊆ R and g : F × U → Y , where Y , U ,

and F are the convex domains of yt, ut, and ft, respectively. For ease of exposition, we

set the dimension of the parameter vector λ to one. All results can be generalized to the

high-dimensional case straightforwardly, because none of the arguments used in the proofs

rely on λ being a scalar.

We denote the initialized stochastic time-varying parameter, also called the filtered para-

meter, by f̂t(θ, f̂1), as it depends on the static parameter vector θ = (ω, α, β, λ) ∈ Θ ⊆ R4

and the non-random initialization f̂1 ∈ F for t = 1. For notational simplicity, we suppress

the dependence of f̂t(θ, f̂1) on its arguments whenever possible and write f̂t instead. The sta-

tionary limit of f̂t, which does not depend on the initialization f̂1, is denoted by ft := ft(θ),

where again the argument θ is usually suppressed.

In case θ0 is the true static parameter, then ft(θ0) is the true stochastic time-varying

parameter driving the model. We assume that the true time-varying parameter originates in

the infinite past, and hence, has no initialization. A similar approach is found in settings in
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which the process can be unfolded backwards in time and is shown to converge to a stationary

sequence that extends to the infinite past. Typical examples include linear autoregressive

models, threshold autoregressive models, GARCH models and autoregressive models with

random coefficients. The work of Bougerol (1993) and Straumann and Mikosch (2006) rely

on the same assumption.

We adopt a leading example throughout the expositions below to explain the notation

and to illustrate how our results can be applied in a concrete setting.

Main example. Consider the Student’s t based time-varying scale model. This model was

originally proposed by Creal et al. (2011, 2013) and Harvey (2013) in the context of modeling

daily financial returns, and encompasses the celebrated GARCH model of Engle (1982) and

Bollerslev (1986). The model is given by

yt = f
1/2
t · ut, (2.2)

where ut is an innovation; the model is a special case of (1.1) with g(ft, ut) = f
1/2
t · ut,

which is strictly increasing in ut if ft > 0, and with Student’s t density pu. We also obtain

ḡt = g−1(ft, yt) = yt/f
1/2
t and ḡ′t = f

−1/2
t . To ensure positivity of the scale ft for all t, we

impose β ≥ α ≥ 0, ω > 0, and f̂1 > 0, where f̂1 is the initial condition for ft at time t = 1.

It follows that

py(yt|ft;λ) =
Γ
(

(λ+ 1)/2
)

Γ(λ/2)
√
π λ ft

(
1 + λ−1y2

t /ft

)−(λ+1)/2

.

where λ is the degrees of freedom parameter. The time-varying parameter ft should not be

interpreted as a variance, because we do not impose E[u2
t ] = 1. Instead, ft can be viewed

as a scaling parameter and we can refer to the model as a conditional scaling model. Creal

et al. (2011, 2013), discuss a case where ft can be interpreted as a variance because a scaled

Student’s t distribution is used for the innovation ut.

The characteristic feature of score-driven models is their use of the scaled score function

as the driving mechanism in transition equation (1.1). Given the decomposition (2.1), we

obtain

∇t(ft, yt;λ) =

[
∂p̄t
∂f

+
∂ log ḡ′t
∂f

]∣∣∣∣
f=ft

, (2.3)

with p̄t := p̄(ft, yt;λ) = log pu(ḡ(ft, yt);λ) and ḡ′t = ∂ḡ(ft, y)/∂y|y=yt . The scaling function

S : F × Λ→ F in (1.1) should be positive. Often, it is taken as a power of the conditional

inverse Fisher information to account for the curvature of the score at time t; see Creal et al.

(2013) for more details.
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Main example (continued). Given the Student’s t density py, we obtain updating function

f̂t+1 = ω + α
(
wt y

2
t − f̂t

)
+ βf̂t,

wt = (1 + λ−1)/(1 + λ−1 y2
t /f̂t),

(2.4)

for nonrandom initial value f̂1, where we used a scaling function S(f̂t;λ) = 2f̂ 2
t proportional

to the inverse conditional Fisher information. The score-driven scale dynamics in (2.4) have

the interesting feature that they downweight large realizations yt via the weights wt in (2.4).

It gives the score-driven model the desirable robustness feature that is lacking in the GARCH

model with Student’s t distributed innovations; see Creal et al. (2011) and Harvey and Luati

(2014) for more details.

For the limiting case λ → ∞, yt becomes conditionally normally distributed, and we

recover a slightly reparameterized version of the standard GARCH model of Engle (1982)

and Bollerslev (1986), f̂t+1 = ω + αy2
t + (β − α)f̂t. For finite λ, however, the recursion in

(2.4) is highly nonlinear in both yt and f̂t.

Section 4 establishes the asymptotic properties of the maximum likelihood estimator

(MLE) for the static parameter vector θ. We define the MLE θ̂T (f̂1) for fixed initial condition

f̂1 as

θ̂T (f̂1) ∈ arg max
θ∈Θ

`T (θ, f̂1),

with the average log-likelihood function `T given in closed form as

`T (θ, f̂1) =
1

T

T∑
t=1

(
log pu(ḡ(f̂t, yt);λ) + log

∂ḡ(f̂t, yt)

∂y

)
=

1

T

T∑
t=1

(
p̄t + log ḡ′t

)
. (2.5)

The availability of a closed-form expression for the likelihood function is one of the computa-

tional advantages of observation-driven time-varying parameter models. It has for instance

led to the widespread application of GARCH models in applied empirical work. As is clear

from equation (2.5), score-driven models benefit from the same computational advantages.

3 Stochastic Properties of Score-Driven Filters

Before we develop the asymptotic properties of the MLE, we first establish the stationarity,

ergodicity, and invertibility properties and the existence of moments of the stochastic time-

varying parameter process {ft}. We do so using primitive conditions. The likelihood function

(2.5) is formulated in terms of the data and in terms of the filtered time-varying parameter

f̂t as defined by the recursion in (1.1). In order for the likelihood function to be well-behaved

and for an appropriate law of large numbers (LLN) and central limit theorem (CLT) to apply,
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the filtered sequence {f̂t} as well as the sequences of its first and second order derivatives

need to be sufficiently well-behaved for a given data sequence {yt}. Naturally, the filtered

{f̂t} sequence for given data {yt} needs to be carefully distinguished from its model-implied

counterpart, which takes the innovations {ut} rather than the data {yt} as given. We will

therefore denote this later sequence by {fut }. In this section we investigate the properties of

both the filtered and model-implied sequences. The results below are used in Section 4 to

establish the asymptotic properties of the MLE for θ.

We first introduce some additional notation. For a scalar random variable x, define

‖x‖n := (E|x|n)1/n for n > 0. If the random variable x(θ) depends on a parameter θ ∈ Θ,

define ‖x(·)‖Θ
n := (E supθ∈Θ |x(θ)|n)1/n. We say that the sequence {xt} converges exponen-

tially fast almost surely (e.a.s.) to the sequence {x′t} if ct ‖xt − x′t‖
a.s.→ 0 for some c > 1; see

Straumann and Mikosch (2006).

Propositions 3.1 and 3.3 below are written specifically for the score-driven recursion

in (1.1). The propositions can, however, be extended to more general forms which can

be found in Technical Appendix B. First, we consider the score-driven model defined in

terms of the innovations ut rather than in terms of the observations yt. This enables us to

establish explicit results for the score-driven model as a potential data generating process

and to derive properties for the MLE under the assumption of a correctly specified model.

Define su,t := s(f̂ut , g(f̂ut , ut);λ) where s(ft, yt;λ) = S(ft;λ) · ∇t(ft, yt;λ) and let {f̂ut }t∈N be

generated by

f̂ut+1 = ω + α su,t + β f̂ut , (3.1)

for t > 1 and an initial non-random value f̂u1 ∈ R.

Main example (continued). The recursion in (2.4) is defined in terms of yt and f̂t. If we

define the recursion in terms of ut and f̂ut instead as required by equation (3.1), we obtain

f̂ut+1 = ω +

(
β + α

(
(1 + λ−1)u2

t

1 + λ−1u2
t

− 1

))
· f̂ut , (3.2)

such that su,t = ((1 + λ−1)u2
t/(1 + λ−1u2

t ) − 1) · f̂ut . So whereas the recursion in (2.2) is

highly nonlinear in f̂t given yt, the recursion in (3.2) is linear in f̂ut for given ut. The data

generating process (3.2) allows large values of ut to have a small impact on the stochastic

time-varying parameter, relative to a GARCH model with Student’s t innovations. The

robustness feature of (3.2) is well suited for a model with heavy-tailed innovations.

We next formulate a result for the stationarity and existence of moments of {fut }t∈Z, the

limit process of {f̂ut }t∈N as given by (3.1). This generalizes the results of Blasques et al.

(2018) which establishes only stationarity, but not bounded moments, and the results of
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Blasques et al. (2014) which hold only for the special case of dynamic correlation models.

We assume that the scaled score su is continuously differentiable in fut and continuous in ut

and λ. Define

ρkt (θ) := sup
fu∗∈F

∣∣ β + α ∂su,t/∂f
u|fu=fu∗

∣∣k. (3.3)

We then have the following proposition.

Proposition 3.1. For every θ ∈ Θ ⊆ R4 let {ut}t∈Z be an i.i.d. sequence and assume

∃f̂u1 ∈ F such that

(i) E log+ |su(f̂u1 , u1;λ)| <∞;

(ii) E log ρ1
1(θ) < 0.

Then {f̂ut }t∈N converges exponentially fast almost surely (e.a.s.) to the unique stationary

and ergodic (SE) sequence {fut }t∈Z for every θ ∈ Θ as t→∞.

If furthermore for every θ ∈ Θ there exists some nfu > 0 such that

(iii) ‖su(f̂u1 , u1;λ)‖nfu
<∞;

(iv) Eρnfu

1 (θ) < 1;

then E|fut |nfu <∞.

Proposition 3.1 not only establishes stationarity and ergodicity (SE) of fut , it also estab-

lishes existence of unconditional moments. Furthermore, conditions (i) and (ii) in Proposi-

tion 3.1 also provide an almost sure representation of fut in terms of {ut}t−1
t=−∞. We refer to

the Technical Appendix for further details.

Remark 3.2. Proposition 3.1 also holds if the supremum in (3.3) is defined over a larger

convex set F∗ ⊇ F . The same holds for Proposition 3.3 later on. This can for instance be

used if the original space F is non-convex.

Main example (continued). In our main example, the recursion (3.1) is always linear

in f̂ut ; see equation (3.2). Conditions (i) and (iii) are satisfied for 0 < λ < ∞ because

(1 + λ−1)u2
t/(1 + λ−1u2

t ) is uniformly bounded in ut by the constant λ+ 1 <∞. Conditions

(ii) and (iv) are satisfied if the factor in front of f̂ut in (3.2) has a log-moment or an nfu

moment, respectively. For example, for nfu = 1 condition (iv) collapses to 0 < β < 1.

Proposition 3.1 will prove convenient in case the model is correctly specified as it describes

the properties of the score-driven model as a data generating process as well as the properties

of the score filter at the true parameter θ0 ∈ Θ. We namely have that fut (θ0) = ft(θ0).
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Irrespective of whether we have a correct or an incorrect specification of the model, to

derive the MLE properties we must always analyze the stochastic behavior of the filtered

time-varying parameter over different θ ∈ Θ. Proposition 3.3 presented below is key in estab-

lishing the invertibility, moment bounds and e.a.s. convergence uniformly over the parameter

space Θ of the score-driven filtered sequence {f̂t}, formulated in terms of the data {yt} rather

than in terms of the innovations {ut} as in equation (3.1). We assume that s is differentiable

in ft and continuous in yt and λ. To state our subsequent proposition concisely, we define

the supremum

ρ̄t(θ) = sup
f∗∈F

∣∣ β + α ∂s(f, yt;λ)/∂f |f=f∗
∣∣. (3.4)

Proposition 3.3. Let Θ ⊂ R4 be compact, and let {yt}t∈Z be an SE sequence. Assume

∃ f̂1 ∈ F such that

(i) E log+ supλ∈Λ |s(f̂1, yt;λ)| <∞;

(ii) E log supθ∈Θ ρ̄1(θ) < 0.

Then the sequence {f̂t}t∈N converges e.a.s. to a unique limit SE sequence {ft}t∈Z as t→∞,

uniformly on Θ.

If furthermore ∃ nf > 0 such that

(iii) ‖s(f̂1, yt; ·)‖Λ
nf
<∞;

(iv) sup(f∗,y,θ)∈F×Y×Θ

∣∣∣ β + α ∂s(f∗,y;λ)
∂f

∣∣∣ < 1;

then ‖ft‖Θ
nf
<∞.

The conditions of Proposition 3.3 are easily satisfied by many models including score-

driven volatility models and time-varying location models, both with different innovation

distributions. Specific examples are the one in our main example, the logistic time-varying

mean models and the log volatility models with Student’s t distributed innovations.

Main example (continued). Consider the time-varying scale model in equation (2.2) with

0 < λ ≤ λ ≤ λ̄ < ∞. From the uniform boundedness of the score in yt for given f̂1, we

obtain that conditions (i) and (iii) of Proposition 3.3 are trivially satisfied. Furthermore, we

have

ṡy,t(f
∗;λ) =

∂s(f, yt;λ)

∂f

∣∣∣∣
f=f∗

=
(1 + λ−1)y4

t /(λf
∗2)

(1 + λ−1y2
t /f

∗)2 − 1. (3.5)
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For fixed λ and yt, ṡy,t(f
∗;λ) is decreasing in f ∗. It attains the value λ as f ∗ → 0 and

the value −1 as f ∗ → ∞ . Given the parameter restriction β ≥ α ≥ 0, it follows that

β + αṡy,t(f
∗;λ) ≥ 0 for every f ∗ ∈ F , implying that its absolute value attains its maximum

as f ∗ → 0. Thus, supθ∈Θ ρ̄1(θ) ≤ sup(f∗,y,θ)∈F×Y×Θ |β + α ∂s(f∗,y;λ)
∂f

| ≤ supθ∈Θ β + λα and

conditions (ii) and (iv) simplify to

sup
θ∈Θ

β + λα < 1. (3.6)

If this condition is met, then nf can be set arbitrarily high.

Propositions 3.1 and 3.3 are similar to the results found in Meitz and Saikkonen (2011).

In particular, these results are based on Bougerol (1993, Theorem 3.1) and Straumann and

Mikosch (2006, Theorem 2.8). The main differences relate only to the specific contexts under

consideration.

Conditions (iii) and (iv) in Proposition 3.3 imply conditions (i) and (ii), respectively.

We emphasize that under conditions (i) and (ii) our score filter is invertible since we are

able to write ft as a measurable function of all past observations. Most importantly, the

invertibility property ensures that the effect of the initialization f̂1 vanishes as t→∞, and

that the filter converges to a unique limit process independently of f̂1; see, for example,

Granger and Andersen (1978), Straumann and Mikosch (2006), Wintenberger (2013) and

Blasques et al. (2018). Establishing invertibility is usually one of the main challenges for

nonlinear time series models with stochastic time-varying parameters.

In Section 4 we show that the stochastic recurrence approach followed in Propositions

3.1 and 3.3 allows us to obtain consistency and asymptotic normality under weaker differ-

entiability conditions than those typically imposed in the score-driven literature; see also

Section 2.3 of Straumann and Mikosch (2006). In particular, instead of relying on the usual

pointwise convergence plus the stochastic equicontinuity of Andrews (1992) and Pötscher

and Prucha (1994), we can obtain uniform convergence through the application of the er-

godic theorem of Rao (1962) for sequences in separable Banach spaces. This constitutes a

crucial simplification as working with the third order derivatives of the likelihood of a general

score-driven model is typically quite cumbersome. We emphasize that alternative uniform

convergence results for proving consistency and asymptotic normality have been used before

by, amongst others, Straumann and Mikosch (2006), Hafner and Preminger (2009) and Meitz

and Saikkonen (2011).

In the remainder of this section we extend the results of Proposition 3.3 to the derivative

processes ∂ft/∂θ and ∂2ft/∂θ∂θ
>. We use stationarity, ergodicity, invertibility and bounded

moments of the derivative processes for proving the asymptotic normality of the MLE. To
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simplify notation, we let f
(i)
t ∈ F (i) denote a vector containing all the ith order derivatives

of ft with respect to θ, where f̂
(0:i)

1 ∈ F (0:i) contains the fixed initial condition for ft and

its derivatives up to order i. Similarly, f
(0:i)
t ∈ F (0:i) = F × . . . × F (i) denotes a vector

containing ft as well as its derivatives with respect to θ up to order i.

We introduce more elaborate notation to clarify whether we are working with a perturbed

sequence or not. The perturbed sequence { ˆ̂f
(i)

t }t∈N , where ˆ̂f
(i)

t := ˆ̂f
(i)

t (θ, f̂
(0:i)

1 ), is initialized

at f̂
(0:i)

1 and depends on the non-stationary initialized sequences {f̂t}t∈N and { ˆ̂f
(1:i−1)

t }t∈N ,

which are only stationary in the limit. The unperturbed initialized sequence {f̂ (i)

t }t∈N with

f̂
(i)

t = f̂
(i)

t (θ, f̂
(i)

1 ) instead depends on the limit SE filter {f (0:i−1)
t }t∈Z , and is initialized

at some f̂
(i)

1 . Under certain conditions, the sequence { ˆ̂f
(i)

t }t∈N converges to the SE unper-

turbed limit sequence {f (i)
t }t∈Z , where f

(i)
t := f

(i)
t (θ), which depends on the limit SE filter

{f (0:i−1)
t }t∈Z . Furthermore, in order to work with primitive conditions we use the notion of

moment preserving maps, which we define as follows.

Definition 3.4. (Moment Preserving Maps)

A function h : Rq × Θ → R is said to be n/n-moment preserving, denoted as h(·;θ) ∈
MΘ1,Θ2(n, n), if and only if E supθ∈Θ1

|xi,t(θ)|ni < ∞ for n = (n1, . . . , nq) and i = 1, . . . , q

implies E supθ∈Θ2
|h(xt(θ);θ)|n <∞. If Θ1 or Θ2 consists of a singleton, we replace Θ1 or

Θ2 in the notation by its single element, e.g., Mθ1,Θ2 if Θ1 = {θ1}.

Moment preservation is a natural requirement in proofs of the asymptotic properties of the

MLE, because the likelihood and its derivatives are nonlinear functions of the original data yt,

the time varying parameter ft, and partial derivatives of the score, such as ∂s(ft, y;λ)/∂λ and

∂2s(ft, y;λ)/∂ft∂λ. Bounding moments of the former can thus be accomplished by bounding

moments of the latter plus invoking a moment preservation property. Moment preservation

is accomplished, for instance, for polynomial functions h(x;θ) =
∑J

j=0 θjx
j ∀ (x,θ) ∈ X ×Θ,

θ = (θ0, . . . , θJ) ∈ Θ ⊆ RJ . It is then trivial to establish h ∈Mθ,θ(n,m) with m = n/J ∀ θ ∈
Θ. If Θ is compact, then also h ∈ MΘ,Θ(n,m) with m = n/J . Similarly, every k-times

continuously differentiable function h(·;θ) ∈ Ck(X ) ∀ θ ∈ Θ, with bounded k-th derivative

supx∈X |h(k)(x;θ)| ≤ h̄k(θ) < ∞ ∀ θ ∈ Θ, satisfies h ∈ Mθ,θ(n,m) with m = n/k ∀ θ ∈ Θ.

If furthermore supθ∈Θ h̄k(θ) ≤ ¯̄h < ∞, then h ∈ MΘ,Θ(n,m) with m = n/k. The Technical

Appendix provides further details and examples of moment preserving maps. We note that

MΘ′,Θ′(n, n) ⊆MΘ,Θ(n, n∗) for all n∗ ≤ n, and all Θ ⊆ Θ′.

Using this notation, we let s ∈ MΘ,Θ(n, ns) where n = (nf , ny), and hence ns denotes

the number of bounded moments of the scaled score supθ∈Θ s(ft, y;λ), when ft and yt have

nf and ny moments, respectively, uniformly in θ. Furthermore, as a convention, we let nλs

and nfλs denote the number of bounded moments for the partial derivatives ∂s(ft, y;λ)/∂λ
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and ∂2s(ft, y;λ)/∂ft∂λ, respectively, when their arguments have nf and ny moments. Also,

for the moments of all functions, the argument ft is always understood to be the stationarity

limit filter which has nf > 0 moments under appropriate conditions stated in Proposition

3.3. We shall make extensive use of analogous definitions for other functions and their

corresponding partial derivatives. Finally, n̄ denotes moments of functions after taking the

supremum over ft. For example, n̄fλs denotes the number of moments of the random variable

supf |∂2s(f, y;λ)/∂f∂λ|, uniformly in θ ∈ Θ, or in moment preserving notation

sup
f

∣∣∣∂2s(f, y; ·)
∂f∂λ

∣∣∣ ∈MΘ,Θ(n, n̄fλs ),

with n = (nf , ny). We apply the same notational principle to other functions and derivatives.

Proposition 3.5. Let the conditions of Proposition 3.3 hold with some nf > 0 and suppose

that s ∈ C(2,0,2)(F × Y × Λ).

Let min{ns, nλs , n̄fs , n̄λfs , n̄ffs } > 0. Then { ˆ̂f
(1)

t }t∈N converges e.a.s. to a unique SE se-

quence {f (1)
t }t∈Z, uniformly in Θ, and furthermore, we have ‖f (1)

t ‖Θ
nfθ

< ∞ for any nfθ

satisfying

nfθ ≤ min
{
nf , ns , n

λ
s

}
.

If additionally min{nλλs , n̄λλfs , n̄λffs , n̄fffs } > 0, then the second derivative { ˆ̂f
(2)

t }t∈N con-

verges e.a.s. to a unique SE sequence {f (2)
t }t∈Z, uniformly in Θ. Furthermore, we have

‖f (2)
t ‖Θ

nfθθ
<∞ for any nfθθ satisfying

nfθθ ≤ min
{
nfθ , n

λλ
s ,

nfsnfθ
nfs + nfθ

,
nffs nfθ

2nffs + nfθ
,

nfλs nfθ
nfλs + nfθ

}
.

The expressions for nfθ and nfθθ may appear complex at first sight. However, they arise

naturally from expressions for the derivative of ft with respect to θ. We next analyze the

moment conditions of Proposition 3.5 in the practical setting of our main example.

Main example (continued). For our main example, we obtain from Proposition 3.3 that

the limit filtered process ft has nf moments for nf arbitrarily high, uniformly in θ, as long

as contraction condition (3.6) is satisfied. So as long as supθ∈Θ β + λα < 1 and β ≥ α ≥ 0,

we can set nf arbitrarily high.

The two remaining conditions required in Proposition 3.5 are min{ns, nλs , n̄fs , n̄λfs , n̄ffs } >
0 and min{nλλs , n̄λλfs , n̄λffs , n̄fffs } > 0. We note that in our main example st is uniformly

bounded in yt for fixed ft. We therefore easily obtain ns = nf . The remaining derivatives
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are straightforward to check as well and can be found in the Technical Appendix. We ob-

tain ns, n
λ
s = nf , and n̄fs , n̄

λf
s , n̄

ff
s → ∞. As a result, min{ns, nλs , n̄fs , n̄λfs , n̄ffs } = nf > 0.

Similarly, min{nλλs , n̄λλfs , n̄λffs , n̄fffs } = nf > 0, because nλλs = nf and n̄λλfs , n̄λffs , n̄fffs →∞.

Using these results, we obtain nfθ ≤ min{nf , ns, nλs} = nf unconditional moments for the

first derivative process, and nfθθ < min{nfθ , nf , nfθ , 1
2
nfθ , nfθ} = 1

2
nfθ ≤ 1

2
nf for the second

derivative process. Here we used the fact that for instance nfs ≥ n̄fs →∞.

Since nf can be set arbitrarily high, we can establish moments up to a large order for

both derivative processes of the score-driven scale model.

We emphasize that the moment conditions stated in Proposition 3.5 are primitive in

the sense that they relate directly to the basic building blocks of the score filter: the score

function and its derivatives. For the practitioner who wishes to verify moment conditions

for any given score model, Technical Appendix G provides a detailed compendium of the

moment preserving properties of different classes of functions to simplify the verification

of the primitive moment conditions in Proposition 3.5. These include examples of robust

volatility filtering and robust trend-extraction models, but also standard regression models

with time-varying regression coefficients.

4 Identification, Consistency, Asymptotic Normality

Next we formulate conditions under which the MLE is strongly consistent and asymptotically

normal. The low-level conditions that we formulate relate directly to the propositions from

Section 3. We obtain asymptotic results for the MLE that hold for possibly misspecified

models. These results take the properties of observed data as given. In addition, we also

obtain asymptotic properties for the MLE that hold for correctly specified models. The latter

results require additional conditions designed to ensure that the score model also behaves

well as a data generating process. For correctly specified models, we are also able to prove a

new global identification result building on low-level conditions rather than on typical high-

level assumptions. We defer a short discussion on the usefulness of asymptotic results under

strong forms of misspecification until directly after Theorem 4.6 below

We start with two rather standard assumptions.

Assumption 4.1. (Θ,B(Θ)) is a measurable space and Θ is compact.

Assumption 4.2. ḡ ∈ C(4,1)(F × Y), ḡ′ ∈ C(4,0)(F × Y), p̄ ∈ C(4,2)(Ũ × Λ), and S ∈
C(3,2)(F × Λ), where Ũ := ḡ(Y ,F)1.

1The notation used here is ambiguous about the existence of cross-derivatives. Therefore, we impose that
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The conditions in Assumption 4.2 are necessary for asymptotic normality of the MLE.

Notice that less restrictive assumptions would suffice for existence and consistency of the

MLE. For example, for existence continuity in ft and measurability in yt would be sufficient.

Let Ξ be the event space of the underlying complete probability space. The next theorem

establishes the existence of the MLE.

Theorem 4.3. (Existence) Let Assumptions 4.1 and 4.2 hold. Then there exists a.s. a

measurable map θ̂T : Ξ → Θ satisfying θ̂T ∈ arg maxθ∈Θ `T (θ, f̂1), for all T ∈ N and every

initialization f̂1 ∈ F , where `T is the average log-likelihood function defined in (2.5).

Using our notation for moment-preserving maps, let log ḡ′ ∈ MΘ,Θ(n, nlog ḡ′) and p̄ ∈
MΘ,Θ(n, np̄) as defined below (2.1) and (2.3), respectively, where n := (nf , ny). Simi-

larly, we have denoted ∇t as the unscaled score ∂ log py(yt|ft;λ)/∂ft and we let supf |∇t| ∈
MΘ,Θ(n, n̄∇) where n̄∇ denotes the moments of supf |∇t|.

To establish consistency, we use the following two assumptions.

Assumption 4.4. ∃ Θ∗ ⊆ R4 and nf > 0 such that, for every f̂1 ∈ F ,

(i) ‖s(f̂1, yt; ·)‖Θ∗
nf
<∞;

(ii) sup(f∗,y,θ)∈F×Y×Θ∗ |β + α ∂s(f ∗, y;λ)/∂f | < 1.

Assumption 4.5. n` = min{nlog ḡ′ , np̄} ≥ 1 and n̄∇ > 0.

Assumption 4.4 ensures the convergence of the sequence {f̂t} to an SE limit with nf

moments on the parameter space Θ∗. As mentioned before, these conditions are similar to

those imposed by Straumann and Mikosch (2006) for consistency of the QMLE of non-linear

GARCH models and for example Meitz and Saikkonen (2011), who use a somewhat more

restrictive analogue of (i) for consistency of the QMLE of non-linear AR-GARCH models.

Assumption 4.5 ensures one bounded moment for the log-likelihood function and a uniform

logarithmic moment for its derivative with respect to f . Both assumptions are stated in

terms of the core structure of the score-driven model: the density of the innovations p̄, the

link function log ḡ′, the unscaled score ∇t, and the scaled score st. The number of bounded

moments of p̄, log ḡ′, ∇t and st can be easily determined as we have set out in Technical

Appendix G. We illustrate the verification of these assumptions using our main example.

Main example (continued). From the derivations around equation (3.6), we have learned

that the conditions of Assumption 4.4 can be easily satisfied for an appropriate compact

if a function h ∈ C(p,q), then all cross-derivatives h(i,j) with 0 ≤ i ≤ p, 0 ≤ j ≤ q and i+ j ≤ max{p, q} exist

and are continuous

15



parameter space Θ∗. Namely, some compact set Θ∗ ⊆ {θ ∈ R4 : β ≥ α ≥ 0 , ω > 0 , λ >

0 , β + λα < 1} meets the requirements. For Assumption 4.5, we notice that ḡ′(ft, yt) =

f
−1/2
t , and hence nlog ḡ′ → ∞ given that nf > 0 and ft ≥ ω > 0 under the parameter

constraint β ≥ α ≥ 0 and the initialization f̂1 ≥ ω > 0. Using the expression

p̄t = log
Γ(λ+1

2
)

Γ(λ
2
)
√
λπ
− 1

2
(λ+ 1) log

(
1 +

y2
t

λ ft

)
,

it follows immediately that np̄ can be set arbitrarily large as long as ny > 0. The condition

n` ≥ 1 in Assumption 4.5 thus only requires the existence of some arbitrarily small moment

ny > 0 of the data yt. Finally, since the unscaled score is given by

∇(ft, yt;λ) =
(1 + λ−1)y2

t

2f 2
t (1 + y2

t /(λft))
− 1

2ft
,

it is uniformly bounded in both ft ≥ ω and yt ∈ R, and hence, n̄∇ > 0 is trivially satisfied.

Theorem 4.6 establishes the strong consistency of the MLE θ̂T . The limit log-likelihood

`∞(·) that occurs in this theorem is defined as `∞(θ) = E˜̀
t(θ) ∀ θ ∈ Θ, with ˜̀

t denoting

the contribution of the t-th observation to the likelihood function `T .

Theorem 4.6. (Consistency under possible model misspecification) Let {yt}t∈Z be an SE

sequence. Furthermore, let E|yt|ny < ∞ for some ny > 0 for which also Assumptions 4.1,

4.2, 4.4, and 4.5 hold. Finally, let θ0 ∈ Θ be the unique maximizer of the limit log-likelihood

`∞(·) on the parameter space Θ ⊆ Θ∗ with Θ∗ as introduced in Assumption 4.4. Then the

MLE satisfies θ̂T
a.s.→ θ0 as T →∞ for any filter initialization f̂1 ∈ F .

We emphasize that the proofs and results of Theorem 4.6 establish global rather than

local consistency. In particular, the assumptions ensure the appropriate limiting behavior

of the average log-likelihood over the entire parameter space Θ, rather than in a (possibly

arbitrarily small) parameter space around the true parameter value only. This stands in

sharp contrast with most of the existing literature on score models, which only delivers local

asymptotic results in a neighborhood of θ0.

Theorem 4.6 also differs from results in the existing score literature in that it establishes

the strong consistency of the MLE in a possibly misspecified model setting. In particular,

consistency of the MLE is obtained with respect to a pseudo-true parameter θ0 ∈ Θ that

is assumed to be the unique maximizer of the limit log-likelihood `∞(θ). This pseudo-true

parameter minimizes the Kullback-Leibler divergence between the probability measure of

{yt}t∈Z and the measure implied by the model. Despite the misspecification of the model,

conducting inference on a pseudo-true parameter is interesting in itself. In particular, infer-

ence on pseudo-true parameters allows us to ask question about the best approximation to the
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data generating process (DGP). The value of this type of inference is well established in the

work of Halbert White since White (1980) which focuses on the interpretation of linear mis-

specified approximations to nonlinear DGPs; see also White (1982), Byron and Bera (1983),

Gourieroux et al. (1984), the textbook White (1994) for an extensive and detailed analysis

of econometric inference under misspecification, and Gouriéroux et al. (2019) for a recent

addition to this literature. Note also that this literature differs from the local-robustness

literature, or the QMLE literature, which deals with small forms of model misspecification

which still allows us to conduct inference on true parameters; see e.g. Newey and Steigerwald

(1997) for an early discussion of the limitations of QMLE or Buja et al. (2019) for a more

recent example of such efforts which links to the recent statistical and machine learning

literature.

In case of misspecification, it is generally difficult to ensure the uniqueness of θ0, so

this assumption might fail. See for example Chapter 4 of Pötscher and Prucha (1997) for

a discussion of this point. Luckily, uniqueness is not crucial for consistency, raising issues

only if one wishes to conduct inference using standard asymptotic normality results. In case

the limit criterion is maximized by a set of points Θ0, then set consistency can be ensured

without any additional assumptions. We state this result in the corollary below.

Corollary 4.7. (Set consistency under possible model misspecification) Let {yt}t∈Z be an

SE sequence. Furthermore, let E|yt|ny < ∞ for some ny ≥ 0 for which also Assumptions

4.1, 4.2, 4.4, and 4.5 hold. Finally, let Θ0 be the set of maximizers of the limit log-likelihood

`∞(·) on the parameter space Θ ⊆ Θ∗ with Θ∗ as introduced in Assumption 4.4. Then the

MLE θ̂T satisfies infθ0∈Θ0 |θ̂T − θ0| a.s.→ 0 as T →∞ for any filter initialization f̂1 ∈ F .

This corollary ensures set consistency of the estimator towards Θ0, and hence it ensures

again that we minimize the KL divergence with respect to the true data generating process,

in the limit, as T diverges to infinity. This result follows from Lemma 4.2 in Pötscher and

Prucha (1997), which requires the uniform convergence of the criterion to a limit criterion

with so-called “regular level sets”. Luckily, the regularity of the level sets, see Pötscher and

Prucha (1997, Definition 4.1), follows trivially from the compactness of Θ and the continuity

of the limit criterion. All these conditions hold under the maintained assumptions, as shown

in the proof of Theorem 4.6.

The results in Theorem 4.6 and Corollary 4.7 naturally require regularity conditions

on the observed data {yt}Tt=1 ⊂ {yt}t∈Z that is generated by an unknown data generating

process. Such conditions in this general setting can only be imposed by means of direct

assumption. However, under an axiom of correct specification, we can restrict the parameter

space in such a way that we can show that the desired assumptions hold. More specifically,
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we can show that yt is stationary and has ny moments, and θ0 is the unique maximizer of

the limit log-likelihood function. In this case, the properties of the observed data {yt}Tt=1

no longer need to be assumed. Instead, they can be derived from the properties of the

score-driven model under appropriate restrictions on the parameter space. By establishing

‘global identification’ we ensure that the limit likelihood has a unique maximum over the

entire parameter space rather than only in a small neighborhood of the true parameter. The

latter is typically used in most of the existing literature and achieved by studying the local

properties of the information matrix at the true parameter.

To formulate our global identification result, we introduce a slightly more precise notation

concerning the domains and images of the key mappings defining the score-driven model.

Define the set Yg ⊆ R as the image of Fg and U under g, i.e., Yg := {g(f, u), (f, u) ∈
Fg × U}, where Fg denotes the domain (for ft) of g. Let U denote the common support of

pu( · ;λ) ∀ λ ∈ Λ, and let Fs and Ys denote subsets of R over which the map s is defined.

Furthermore, statements for almost every (f.a.e.) element in a set hold with respect to

Lebesgue measure. Finally, we let g ∈ MΘ,Θ(n, ng) with n = (nfu , nu), so that ng denotes

the number of bounded moments of g(ft, ut) when ut has nu moments and ft has nfu bounded

moments. In practice, the resulting ng bounded moments can be derived from the moment

preservation properties laid out in the Technical Appendix.

The following two assumptions allow us to derive the appropriate properties for {yt}t∈Z
and to ensure global identification of the true parameter.

Assumption 4.8. ∃ Θ∗ ⊆ R4 and nu ≥ 0 such that for U , Yg, Fg and let Λ∗ denote the

orthogonal projection of a set Θ∗ ⊆ R4 onto the subspace R holding the static parameter λ.

(i) U contains an open set for every λ ∈ Λ∗;

(ii) supλ∈Λ∗ E|ut|nu <∞ and ng ≥ ny > 0;

(iii) g(f, ·) ∈ C1(U) is invertible and ḡ(f, ·) = g−1(f, ·) ∈ C1(Yg) a.e. f ∈ Fg;

(iv) py(y|f ;λ) = py(y|f ′;λ′) holds f.a.e. y ∈ Yg iff f = f ′ and λ = λ′.

Note there is a difference between Θ∗ from Assumption 4.4, and Θ∗ in Assumption 4.8.

The former restricts the statistical model’s parameter space to establish invertibility and

moments, while the latter restricts the DGP’s parameter space to establish stationarity,

ergodicity and moments. Conditions (i) and (iii) of Assumption 4.8 ensure that on the

parameter space Θ∗ the innovations ut have non-degenerate support and g(f, ·) is contin-

uously differentiable and invertible with continuously differentiable derivative. Hence the
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conditional distribution py of yt given ft is non-degenerate and uniquely defined by the dis-

tribution of ut. Bounded moments for yt up to order ny follow from moments of ut and

fut via condition (ii); see the main example below for an illustration of how to operate this

condition. Finally, condition (iv) states that the static model defined by the observation

equation yt = g(f, ut) and the density pu( · ;λ) is identified. It requires the conditional den-

sity of yt given ft = f to be unique for every pair (f, λ). This requirement is very intuitive:

one would not extend a static model to a dynamic one if the former is not already identified.

Main example (continued). For the Student’s t scale model, the domain of ut is always R,

which satisfies part (i) of Assumption 4.8. Parts (iii) and (iv) follow directly from the speci-

fication of the model g(f, u) = f 1/2u and the Student’s t density. Finally, as g(f, u) = f 1/2u,

we can use a standard Hölder inequality to obtain ng = 2nfu ·nu/(nu + 2nfu), such that part

(ii) is satisfied for nfu > 0, 0 < nu < infΛ∗ λ . Note that nfu follows from Proposition 3.1,

part (iii), and can be set arbitrarily high for θ ∈ Θ∗, as will be explained in the discussion

after Assumption 4.9.

Assumption 4.9. ∃ Θ∗ ⊆ R4 and nfu > 0, such that for every θ ∈ Θ∗ and every f̂u1 ∈ Fs

(i) ‖su(f̂u1 , u1;λ)‖nfu
<∞;

(ii) Eρnfu

t (θ) < 1;

Furthermore, α 6= 0 ∀ θ ∈ Θ∗. Finally, for every (f,θ) ∈ Fs ×Θ∗,

∂s(f, y, λ)/∂y 6= 0, (4.1)

for almost every y ∈ Yg.

Conditions (i) and (ii) in Assumption 4.9 ensure that on the parameter space Θ∗ the

true sequence {ft(θ0)} is SE and has nfu moments by the application of Proposition 3.1.

Together with condition (iii) in Assumption 4.8 we then obtain that the data {yt}t∈Z itself

is SE and has ny moments. The inequality stated in (4.1) in Assumption 4.9 and the

assumption that α 6= 0 together ensure that the data {yt} entering the update equation

(1.1) render the filtered sequence {ft} stochastic and non-degenerate. Also, together with

Assumption 4.8 part (i), which ensures there is enough variation in the observed data, these

two assumptions imply identification of the time-varying parameter ft(θ). In other papers

on non-linear observation-driven models, such as Straumann and Mikosch (2006) and Meitz

and Saikkonen (2011), the identification restriction is formulated in a more general way and

in each of their examples, they determine model-specific identification restrictions. These
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restrictions often include that the innovation distribution is not concentrated at two points.

In the current context, such a condition is not necessary, because by Assumption 4.1(i) the

support of the innovations is an open set.

Next we show that our leading example satisfies the conditions for our global identification

result.

Main example (continued). The score su is the product of fut and a term that is uniformly

bounded in ut. Hence, (i) in Assumption 4.9 is satisfied for arbitrary nfu > 0. Furthermore,

by the linearity of su in fut , condition (ii) of Assumption 4.9 collapses to

E
∣∣∣∣β − α + α

(1 + λ−1)u2
t

1 + u2
t/λ

∣∣∣∣nfu

< 1.

In particular, for nfu = 1, we obtain the requirement |β| < 1, which together with the

parameter restrictions to ensure positivity of ft result in 1 > β ≥ α > 0. Notice that we also

require α 6= 0 now. Larger regions can be obtained for smaller values of nfu. Notice that nfu

can be set arbitrarily high for θ ∈ Θ∗, so when β + λα < 1. In other words, Assumption 4.8

and 4.9 impose no further restrictions on the parameter space, apart from the condition that

α 6= 0, so for Θ∗ we can simply take a compact subset Θ∗ ⊆ Θ∗ \ {θ ∈ R4 : α = 0}.

Theorem 4.10 (Global Identification for correctly specified models). Let Assumptions 4.1,

4.2, 4.4, 4.5, 4.8, and 4.9 hold and let the observed data be a subset of the realized path

of a stochastic process {yt}t∈Z generated by a score-driven model under θ0 ∈ Θ. Then

Q∞(θ0) ≡ Eθ0`t(θ0) > Eθ0`t(θ) ≡ Q∞(θ) ∀ θ ∈ Θ : θ 6= θ0.

The axiom of correct specification thus leads to the global identification result in Theorem

4.10. We can use this to establish consistency of the MLE to the true (rather than pseudo-

true) parameter value if the model is correctly specified. This is summarized in the following

corollary.

Corollary 4.11. (Consistency for correctly specified models) Let Assumptions 4.1, 4.2, 4.4,

4.5, 4.8, and 4.9 hold and {yt}t∈Z = {yt(θ0)}t∈Z with θ0 ∈ Θ, where Θ ⊆ Θ∗ ∩ Θ∗ with Θ∗

and Θ∗ defined in Assumptions 4.4, 4.8 and 4.9. Then the MLE θ̂T satisfies θ̂T
a.s.→ θ0 as

T →∞ for every f̂1 ∈ F .

The consistency region Θ∗ ∩Θ∗ under correct specification is a subset of the consistency

region Θ∗ for the misspecified setting. In Theorem 4.6, we namely assume that the data

is SE and that the true parameter is identified, while in Corollary 4.11 we do not make

these assumptions directly. On the parameter space Θ∗, the filtered sequence {f̂t} converges

uniformly to an SE limit with a certain number of moments, but this is no longer enough
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for consistency without the direct assumption of SE data and identification of the true

parameter. The parameter space also has to be (further) restricted to Θ∗ to ensure that the

score-driven data generating process is identified and generates SE data with the appropriate

number of moments.

To establish asymptotic normality of the MLE, we impose an assumption that delivers

2+ δ moments for some small positive δ for the first derivative of the log-likelihood function,

and 1 moment for the second derivative. We make use once again of our notation for moment

preserving maps. In particular, quantities like nλp̄ denote the number of bounded moments of

the derivative of p̄ with respect to λ and quantities like n̄λfp̄ denote the number of bounded

moments of the supremum over ft of the cross derivative with respect to f and λ. We also

let nfθ and nfθθ be defined as in Proposition 3.5.

Assumption 4.12. ∃ Θ∗∗ ⊆ R4 such that n? > 0, n`′′ ≥ 1 and n`′ > 2, with

n? = min
{
n̄∇ , n̄f∇ , nλ∇ , n̄ff∇ , n̄λf∇ , n̄λfp̄ , n̄λλfp̄ , ns , n

λ
s , (4.2)

n̄fs , n̄
λf
s , n̄ffs , nλλs , n̄λλfs , n̄λffs , n̄fffs

}
,

n`′ = min

{
nλp̄ ,

n∇nfθ
n∇ + nfθ

}
, (4.3)

n`′′ = min

{
nλλp̄ ,

n∇nfθθ
n∇ + nfθθ

,
nλ∇nfθ
nλ∇ + nfθ

,
nf∇nfθ

2nf∇ + nfθ

}
. (4.4)

We introduce the new set Θ∗∗, because the parameter restrictions imposed by the para-

meter space Θ∗ are not always strong enough to ensure the existence of all the moments

in Proposition 3.3. So for asymptotic normality, we need to further restrict the parameter

space because we need these additional moment conditions to hold.

Similar to the moment conditions in Proposition 3.3, the moment conditions in Assump-

tion 4.12 relate directly to low-level (primitive) elements of the model. The expressions in

(4.2), (4.3) and (4.4) follow directly from the formulas for the derivatives of the log-likelihood

with respect to θ. Having n`′ > 2 facilitates the application of a central limit theorem to

the score. Similarly, n`′′ ≥ 1 allows us to use a uniform law of large numbers for the Hes-

sian. Finally, the condition n? > 0 is designed to ensure that the moment conditions of

Proposition 3.5 are satisfied and the e.a.s. convergence of the filter f̂t to its stationary limit

is appropriately reflected in the convergence of both the score and the Hessian.

In any case, if one favors simplicity at the cost of some generality, then the expressions

for n`′ and n`′′ can be easily simplified to a single moment condition as stated in the following

remark.
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Remark 4.13. Let n denote the lowest of the primitive derivative moment numbers nλp̄ , n∇,

etc. Then n > 4 implies n`′ > 2 and n`′′ ≥ 1.

It can be easier, however, to check the moment conditions formulated in Assumption 4.12

directly rather than the simplified conditions in Remark 4.13. We can illustrate this point

using our main example.

Main example (continued). For the Student’s t scale model, a number of derivative func-

tions need to be computed. These can be found in the Technical Appendix. Many of these are

uniformly bounded functions. In particular, we have n̄∇, n̄
f
∇, n̄

λ
∇, n̄

λf
∇ , n̄

ff
∇ , n̄

λf
p̄ , n

λλ
p̄ , n̄

λλf
p̄ →

∞. Also recall that we argued that all moments necessary for Proposition 3.5 exist. Further-

more, nλp̄ ≤ ny/δ for some (small) δ > 0. Therefore, if some finite moment of yt exists, we

can set nλp̄ arbitrarily large. As a result, n? > 0, n`′ ≤ min{ny/δ′, nfθ} for arbitrary δ′ > 0,

and n`′′ ≤ min{nfθθ , nfθ , 1
2
nfθ}. We have derived earlier that nfθθ < nfθ/2, such that n`′ > 2

and n`′′ ≥ 1 imply that we need nfθ > 2. If the contraction condition is met over the entire

parameter space, then as also shown earlier we can set nfθ arbitrarily high and thus satisfy

Assumption 4.12. This condition is met on the parameter space Θ∗, so we need no additional

restriction and we can set Θ∗∗ = Θ∗.

In well-specified models, the asymptotic normality of the MLE is obtained by applying a

central limit theorem (CLT) for SE martingale difference sequences to the ML score, that is

the derivative of the log-likelihood function `T (θ, f̂1) with respect to θ and evaluated at the

MLE. As noted in White (1994), in the presence of dynamic misspecification, the ML score

generally fails to be a martingale difference sequence even at the pseudo-true parameter. As

a result, stricter conditions are required to obtain a central limit theorem that allows for

some temporal dependence in the ML score.

Below we use the property of near epoch dependence (NED) to obtain a CLT for the

ML score. In particular, we use the uniform filter contraction in Assumption 4.4 to ensure

that the filter is NED whenever the data is NED. Furthermore, in Assumption 4.14 below,

we impose sufficient conditions for the ML score to be Lipschitz continuous on the data

as well as on the filter and its derivative. This assumption is designed to guarantee that

the ML score inherits the NED property from the data and the filter. The conditions of

Assumption 4.14 can be weakened in many ways; see, for example, Davidson (1994) and

Pötscher and Prucha (1997) for a discussion of alternative conditions. Here the Lipschitz

continuity condition allows us to keep the asymptotic normality results clear and simple.

Assumption 4.14. ∂p̄t/∂f and ∂ log ḡ′t/∂f are uniformly bounded random variables and

∂p̄t/∂f , ∂ log ḡ′t/∂f and ∂p̄t/∂λ are a.s. Lipschitz continuous in (yt, ft).
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Main example (continued). Using the Student’s t scale model, we have already seen

that ft ≥ ω > 0 for all t. The relevant derivative of p̄t equals f−1
t times a uniformly

bounded function of y2
t /ft, which obviously results in a uniformly bounded function. Also

∂ log ḡ′t/∂f = 0.5f−1
t is trivially uniformly bounded. Furthermore, ∂p̄t/∂f , ∂ log ḡ′t/∂f and

∂p̄t/∂λ are Lipschitz continuous in (yt, ft) , because their first derivatives with respect to yt

and ft are bounded. Hence Assumption 4.14 holds for the leading example.

The following theorem states the main result for asymptotic normality of the MLE under

misspecification, with int(Θ) denoting the interior of Θ.

Theorem 4.15. (Asymptotic normality under possible model misspecification) Let {yt}t∈Z
be SE and NED of size −1 on a strongly mixing process of size −δ/(1− δ) for some δ > 2.

Furthermore, let E|yt|ny <∞ for some ny ≥ 0 for which also Assumptions 4.1, 4.2, 4.4, 4.5,

4.12 and 4.14 are satisfied. Finally, let θ0 ∈ int(Θ) be the unique maximizer of `∞(θ) on Θ,

where Θ ⊆ Θ∗ ∩Θ∗∗ with Θ∗ and Θ∗∗ as defined in Assumptions 4.4 and 4.12 and let E˜̀′′
t (θ0)

be non-singular. Then, for every f̂1 ∈ F , the MLE θ̂T (f̂1) satisfies

√
T (θ̂T − θ0)

d→ N
(
0, I−1J I−1

)
as T →∞,

where I := −E˜̀′′
t (θ0) is the Fisher information matrix, ˜̀

t(θ0) denotes the log-likelihood

contribution of the t-th observation evaluated at θ0, and

J (θ0) := lim
T→∞

T−1E
( T∑
t=1

˜̀′
t(θ0)

)( T∑
t=1

˜̀′
t(θ0)>

)
.

When the model is correctly specified, the ML score can be shown to be a martingale

difference sequence at the true parameter value. Hence we no longer need the assumption

that the data is NED. Also, we can drop Assumption 4.14, which was used to ensure that the

ML score was NED. In general we are presented with a trade-off between the assumption of

correct specification combined with weaker additional assumptions, versus the stricter NED

conditions without the assumption of correct specification. Apart from this trade-off, the

proof of asymptotic normality is the same in both cases. The following theorem states the

asymptotic normality result for the MLE in the context of a correctly specified model.

Theorem 4.16. (Asymptotic normality under correct specification) Let Assumptions 4.1,

4.2, 4.4, 4.5, 4.8, 4.9, and 4.12 hold and assume {yt}t∈Z is a random sequence generated

by a score-driven model under some θ0 ∈ int(Θ) where Θ ⊆ Θ∗ ∩ Θ∗ ∩ Θ∗∗ with Θ∗, Θ∗ and

Θ∗∗ defined in Assumptions 4.4, 4.8, 4.9, and 4.12 and let E˜̀′′
t (θ0) be regular in the sense of

Rothenberg (1971). Then, for every f̂1 ∈ F , the MLE θ̂T (f̂1) satisfies

√
T (θ̂T − θ0)

d→ N
(
0, I−1

)
as T →∞,
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where I is the Fisher information matrix as defined in Theorem 4.15.

Theorem 4.16 does not have a separate ny-moment condition like Theorems 4.6 and 4.15.

This stems from the fact that under correct specification the moment conditions for yt are

implied by the moment conditions on the data generating process, such as the moment

conditions on ut and g(ft, yt) in Assumptions 4.8 and 4.9.

Main example (continued). To verify the conditions of Theorem 4.16 for the main ex-

ample, we have already shown that Assumption 4.12 requires nf > 2 and that an arbitrarily

small moment ny > 0 of yt exists. Using the derivations below Proposition 3.3, we showed

that the condition nf > 2 is met if the contraction condition (3.6) is satisfied. Furthermore,

we already showed in the exposition after Assumption 4.8 that the condition ny > 0 is met

if infΛ λ = λ > 0 such that an arbitrarily small moment exists for ut and if nfu > 0, which

holds under Assumption 4.9.

5 Empirical Illustration

The theorems and corollaries derived in the previous section establish the existence, strong

consistency, global identification, and asymptotic normality of the MLE for a general class

of score-driven models under correct and incorrect model specification. In this section, we

make use of a practical example to provide some further intuition for the main assumptions

and results next to the leading example dealt with throughout the main text.

The Student’s t Location Model

Consider the score-driven Student’s t location model proposed by Harvey and Luati (2014).

The observation equation of the model is given by

yt = ft + ut , ft+1 = ω + αwt (yt − ft) + βft , wt = (1 + ν−1e−2κ (yt − ft)2)−1, (5.1)

where we use a scaling function S(ft;λ) = (1 + ν−1)−1e2κ proportional to the inverse con-

ditional Fisher information. So in the notation of (1.1), we have g(ft, ut) = ft + ut, which

is strictly increasing in ut, and we impose that ut has a Student’s t-density pu with degrees

of freedom parameter ν > 0 and scale parameter exp(κ). So λ = (ν, κ) is two-dimensional.

As argued before, all results continue to hold for multivariate λ. Clearly, the inverse link

function and its derivative with respect to yt are given by ḡt = g−1(ft, yt) = yt − ft and

ḡ′t = 1.

24



Consistency

If the model is well specified, then we can show consistency of the MLE on a compact Θ by

demonstrating that the assumptions of Corollary 4.11 hold. It is straightforward to see that

assumptions 4.1 and 4.2 hold for this model. Next, we note that Assumption 4.4 holds on

some Θ∗ ⊆ R5 and for some nf > 0, which ensures the uniform invertibility of the filter. In

particular, condition (i) holds for all compact sets Θ∗ and every nf > 0, because s(f̂1, yt; ·)
is uniformly bounded in yt for any given f̂1. For condition (ii), it can be shown that for any

λ and yt, the derivative

∂s(f ∗, yt;λ)

∂f
=

ν−1e−2κ(yt − f ∗)2 − 1

(1 + ν−1e−2κ(yt − f ∗)2)2 ,

is bounded between −1 and 1/8 (these values are attained at yt − f ∗ = 0 and yt − f ∗ =

± exp(κ)
√

3ν respectively). It follows that

sup
(f∗,y,θ)∈F×Y×Θ∗

∣∣∣∣β + α
∂s(f ∗, y;λ)

∂f

∣∣∣∣ ≤ sup
θ∈Θ∗

max

{
|β − α| ,

∣∣∣∣β +
1

8
α

∣∣∣∣} .

Therefore, condition (ii) of Assumption 4.4 holds for any compact set Θ∗ ⊆ R5 for which

max{|β−α|, |β+ 1
8
α|} < 1 and ν > 0 for every θ ∈ Θ∗. The region of the (α, β)-plane where

the filter is invertible is represented by the hatched area in Figure 1. So, Assumption 4.4

holds for any compact Θ∗ with all pairs (α, β) in the interior of this area (and ν > 0), and

the filter is invertible uniformly over Θ∗.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

α

β

Figure 1: The stationarity region (the gray shaded area) and the invertibility region (the hatched area)

of α and β for the score-driven Student’s t location model. These areas contain the pairs (α, β) for which

|β| < 1 and max{|β − α|, |β + 1
8α|} < 1 , respectively.

For Assumption 4.5, recall that ḡ′t = 1, so we only need to show that np̄ ≥ 1 and n̄∇ > 0.

For the former, consider the expression

p̄t = log
Γ(ν+1

2
)

Γ(ν
2
)
√
νπeκ

− 1
2
(ν + 1) log

(
1 + ν−1e−2κ(yt − ft)2

)
.
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It follows directly that np̄ can be set arbitrarily high if E|yt − ft|n < ∞ for some n > 0 .

By the Cr-inequality in Loève (1977, p.157), we have that E|yt− ft|n ≤ cE|yt|n + cE|ft|n for

some c > 0, so np̄ > 1 only requires nf > 0 and ny > 0 , where the former condition holds

by Assumption 4.4 and the latter is either assumed directly (in Theorem 4.6) or indirectly

(in Corollary 4.11). Also, for n̄∇ > 0, we can use that the unscaled score is given by

∇(ft, yt; ν) = (1 + ν−1)
e−2κ(yt − ft)

1 + ν−1e−2κ(yt − ft)2
,

which is uniformly bounded in (ft, yt) ∈ R2. This implies that n̄∇ > 0 is trivially satisfied.

If the model is well specified, the MLE is consistent for the true parameter θ0 as long as

it generates appropriately behaved data as a DGP; see Technical Appendix E for relevant

details on the verification of the DGP assumptions 4.8 and 4.9. In contrast, if the model is

misspecified, then the MLE is set-consistent with respect to the set of pseudo-true parameters,

as long as observed data is stationary, by Corollary 4.7. If there exists a unique pseudo-true

parameter θ0, then the MLE is consistent for θ0 by Theorem 4.6.

Asymptotic normality

Asymptotic normality can be obtained by verifying Assumption 4.12 (or the simpler condi-

tion in Remark 4.13) as well as Assumption 4.14. Assumption 4.12 requires the existence of

certain moments. All quantities under consideration are uniformly bounded in both ft ∈ R
and yt ∈ R as long as ν > ν > 0, except for ∂p̄t/∂ν. This derivative namely consists of

uniformly bounded terms and the term log(1 + ν−1e−2κ(yt − ft)2) , which is not uniformly

bounded. However, we know that this term has bounded moments of any order as long as

ny > 0 and nf > 0 , which holds by previous assumptions. Hence, Assumption 4.12 holds

under the current parameter restrictions because n?, n`′′ and n`′ can all be set arbitrarily

high. Therefore, we can choose Θ∗∗ = Θ∗, because the moment conditions in Assumption

4.12 does not impose any additional restrictions on the parameter space. Finally, Assump-

tion 4.14 holds, because it can be seen straightforwardly that ∂p̄t/∂f is uniformly bounded,

∂p̄t/∂f and ∂p̄t/∂λ are a.s. Lipschitz continuous in (yt, ft) and ∂ log ḡ′t/∂f = 0 .

Under correct specification, and the maintained assumptions, we have by Theorem 4.16

that the MLE θ̂T is consistent for the true parameter θ0 and asymptotically normal with an

asymptotic variance given by the inverse information matrix, in case E˜̀′′
t (θ0) is regular in

the sense of Rothenberg (1971). If the model is misspecified, then by Theorem 4.15 the MLE

is consistent for a pseudo-true parameter θ0 and asymptotically normal with an asymptotic
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Figure 2: Normalized daily EPUI data from 2014 to 2019 (left panel) and News Impact

Curve (NIC) of a linear and estimated filter (right panel). The left panel also holds the

filtered f̂t using the estimated Student’s t score-driven filter.

variance given by a sandwich formula, whenever the assumptions of Theorem 4.6 hold, the

unique maximizer θ0 of `∞(θ) on Θ lies in the interior of Θ, and E˜̀′′
t (θ0) is non-singular.

Application to EPUI data

To demonstrate how the model above could be used in practice, we apply it to the daily

Economic Policy Uncertainty Index (EPUI) of the United States2. The EPUI has been

shown to successfully proxy changes in policy-related economic uncertainty, see Baker et al.

(2015). Figure 2 plots the data. We use the T = 2191 daily observations from 2014 until

2019.

The figure shows that the EPUI is noisy and occasionally displays large outliers, such as

the June 2016 spike, which is probably due to the Brexit referendum outcome. After spikes

like this, the EPUI usually quickly returns to its mean value. Therefore, the Student’s t

location model could be a suitable model for this data, as it downweighs large observations

in the construction of the filtered location. This is most clearly seen when looking at the

news impact curves (NIC) in the right panel of Figure 2.

The maximum likelihood estimates are given in Table 1. Notice that the estimated

degrees of freedom parameter ν̂T has a low value of around 4, which implies a fat-tailed

innovation distribution and more importantly shows that the estimated model has a filter

which is robust to large outliers. The filtered locations {f̂t}Tt=1 are plotted in the left panel

2Baker, Scott R., Bloom, Nick and Davis, Stephen J., Economic Policy Uncertainty Index for United

States [USEPUINDXD], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.

stlouisfed.org/series/USEPUINDXD. We standardize the data by subtracting the sample mean over the

pre-sample period 1985–2008, and dividing by 100.
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Table 1: MLE estimates for the EPUI data from Figure 2 and the score-driven Student’s t

location model (5.1). Standard errors in parentheses.

ω α β ν κ

Full model

-0.010 0.387 0.934 4.019 -1.198

(0.003) (0.043) (0.016) (0.336) (0.025)

Restricted model

-0.163 0.576 4.140 -1.126

(0.018) (0.039) (0.479) (0.034)

of Figure 2. The robustness of the filter is clearly visible in this graph. Incidental spikes

hardly move the filter.

The parameter estimates all lie within Θ∗ ∩ Θ∗ ∩ Θ∗∗ from Figure 1. It follows from

Corollary 4.11 and Theorem 4.16 that the MLE is consistent and asymptotically normal

with covariance matrix I−1 under the assumption that the model is correctly specified. The

standard errors shown in Table 1 are based on the assumption of correct specification,

As a simple illustration of hypothesis testing, we consider testing the null hypothesis that

ω = 0. Under the assumption of correct specification, the unconditional mean of the true

time-varying parameter ft is ω/(1 − β). Therefore, testing H0 : ω = 0 amounts to testing

whether the unconditional expectations of both the time-varying location parameter ft and

the observations yt are equal to zero. The t-statistic of ω̂T equals −3.130 and shows that the

null-hypothesis is rejected at a 1% significance level indicating that the expected value of

the EPUI from 2014 up until 2019 is significantly different from its pre-sample (1985–2008)

average, as we use the demeaned data in our analysis.

As a second illustration, we consider estimating a restricted version of our score-driven

location model by imposing β = 0. The results are provided in the lower panel of Table 1.

The restriction β = 0 causes the filtered location to be less flexible compared to the un-

restricted setting. Let us assume that the model is incorrectly specified. From Corollary

4.7 we know that the MLE is set-consistent to the set of pseudo-true parameters within the

compact Θ ⊆ Θ∗ ∩ Θ∗∗, as long as we assume that the data comes from an SE sequence

which has a small bounded moment. The set of pseudo-true parameters is the collection of

parameter values that minimize the limit Kullback-Leibler divergence with respect to the

true distribution of the data.

If we additionally assume that the pseudo-true parameter θ0 is unique and lies in the
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interior of the parameter space Θ, that {yt}t∈Z is NED of size -1 on a strongly mixing process

of size −δ/(1−δ) for some δ > 2 and that −E˜̀′′
t (θ0) is invertible, the MLE is asymptotically

normal by Theorem 4.15. The corresponding standard errors can be found in Table 1 again.

By Theorem 4.15 we have that the true asymptotic covariance matrix is given by I−1J I−1,

which we estimate by its sample counterpart Î−1
T ĴT Î−1

T .

Using the estimated parameters and their standard errors, we can now test the null-

hypothesis H0 : α = 0. The t-statistic of 0.576/0.039 ≈ 14.77 clearly shows that the

null hypothesis can be rejected at any sensible significance level. This means that there is

statistical evidence that the ‘best approximating model’ in terms of KL divergence for these

data has a time-varying conditional mean. In other words, we reject the null hypothesis that

the conditional mean of the EPUI data is constant over time.

The test examples considered in this section are acknowledgedly simple, but already

show that the theory developed in this paper can be used for interesting test formulations

relating to the best approximating model in a KL sense, even if this model is misspecified.

Further tests would include (i) tests for leverage effects and asymmetry parameters in score-

driven volatility models with asymmetric Gaussian or asymmetric Student’s t densities for

the innovations (Lucas et al., 2014, 2017; Harvey and Sucarrat, 2014); (ii) testing for mixture

parameters in score models with mixture distributions (Catania, 2020); and (iii) testing for

parameter significance of explanatory variables in spatial regression models with time-varying

parameters (Blasques et al., 2016; Catania and Billé, 2017).

We finally note that when misspecification affects only some elements of the model, then

one could still potentially obtain consistency to a true parameter using QMLE results. Some

of these results also directly apply to the setting of score-driven models, such as the GARCH

and the linear location model. However, the study of such small forms of misspecification is

not the focus of the current paper.

6 Conclusions

We have developed an asymptotic distribution theory for the class of score-driven time-

varying parameter models. Despite a wide range of newly developed models using the score-

driven approach, a theoretical basis has been missing. We have aimed in this study to make

a substantial step forward. In particular, we have developed a global asymptotic theory

for the maximum likelihood estimator for score-driven time series models as introduced by

Creal et al. (2011, 2013) and Harvey (2013). Our theorems are global in nature and are

based on primitive, low-level conditions stated in terms of functions that make up the core
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of the score-driven model. We also state conditions under which the score-driven model is

invertible. In contrast to the existing literature on score-driven models, we do not need to

rely on the empirically untenable assumption that the starting value f̂1 is both random and

observed. For the case of correctly specified models, we have been able to establish a global

identification result that holds under weak conditions. We believe that the presented results

establish a proper foundation for the use of the score function in observation-driven models

and for maximum likelihood estimation and hypothesis testing.
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A Proofs of Main Results

Proof of Proposition 3.1. We regard this proof as a special case of Proposition TA.1 in Appendix

B of the Technical Appendix, by setting

φ(xt(θ, x̄), vt,θ) = ω + αsu(f̂ut , ut;λ) + β f̂ut ,

vt = ut, and xt(θ, x̄) = f̂ut (θ, f̂u1 ). Here su is assumed to be su ∈ C(1,0,0)(F × U × Λ) for convex

F , such that φ ∈ C(1,0,0)(X ×V ×Θ) with a convex X . Recall that {ut}t∈Z is an i.i.d. sequence by

definition of the model. Conditions (i) and (iii) in Proposition TA.1 in Appendix B now directly

follow from conditions (i) and (iii) of Proposition 3.1 (see the proof of Proposition 3.3 for a more

thorough explanation). Condition (iv) in Proposition TA.1 directly follows from condition (iv) in

Proposition 3.1 by observing that from the mean value theorem we have

Erk1(θ) = E sup
(x,x′)∈X×X :x 6=x′

|φ(x, vt,θ)− φ(x′, vt,θ)|k
|x− x′|k ≤

E sup
x∗∈X

∣∣∣∂φ(x∗, vt,θ)

∂x

∣∣∣k = E sup
fu∗∈F

∣∣∣β + α
∂su(fu∗, ut,θ)

∂fu

∣∣∣k = Eρk1(θ) ∀ k > 0.
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The same argumentation can be used to show that condition (ii) of Proposition TA.1 follows from

condition (ii) of Proposition 3.1.

Proof of Proposition 3.3. The results for the sequence {f̂t} are obtained by application of Proposi-

tion TA.3 in Appendix B with vt = yt and xt(θ, x̄) = f̂t(θ, f̂1) and φ(xt, vt,θ) = ω+αs(f̂t, yt;λ) +

βf̂t.

Step 1, SE for ft: Condition (i) of Proposition TA.3 holds, because

E log+ sup
θ∈Θ
|φ(x̄, vt,θ)− x̄| = E log+ sup

θ∈Θ
|ω + αs(f̂1, yt;λ) + βf̂1 − f̂1|

≤ E log+ sup
θ∈Θ

[
|ω|+ |α| · |s(f̂1, yt;λ)|+ |β − 1| · |f̂1|

]
≤ log+ sup

ω∈Ω
|ω|+ log+ sup

α∈A
|α|+ E log+ sup

λ∈Λ
|s(f̂1, yt;λ)|

+ sup
β∈B

log+ |(β − 1)|+ log+ |f̂1| <∞

with log+ supω∈Ω |ω| <∞, log+ supα∈A |α| <∞ and supβ∈B log+ |(β − 1)| <∞ by compactness of

Θ, and log+ |f̂1| < ∞ for any f̂1 ∈ F ⊆ R, and E log+ supλ∈Λ |s(f̂1, yt;λ)| < ∞ by condition (i) in

Proposition 3.3.

Condition (ii) in Proposition TA.3 holds, because

E log sup
θ∈Θ

r1
1(θ) =

E log sup
θ∈Θ

sup
(f,f ′)∈F×F :f 6=f ′

|ω − ω + α(s(f, yt;λ)− s(f ′, yt;λ)) + β(f − f ′)|
|f − f ′|

= E log sup
θ∈Θ

sup
(f,f ′)∈F×F :f 6=f ′

|α(s(f, yt;λ)− s(f ′, yt;λ)) + β(f − f ′)|
|f − f ′|

= E log sup
θ∈Θ

sup
(f,f ′)∈F×F :f 6=f ′

|αṡy,t(f∗;λ)(f − f ′) + β(f − f ′)|
|f − f ′|

≤ E log sup
θ∈Θ

sup
f∗∈F

∣∣∣αṡy,t(f∗;λ) + β
∣∣∣ = E log sup

θ∈Θ
ρ̄1(θ) < 0,

where the second equality holds by the mean value theorem and where the last inequality follows

directly from condition (ii) in Proposition 3.3.

Step 2, moment bounds for ft: By a similar argument as in Step 1, we can show that con-

dition (iv) in Proposition TA.3 follows from condition (iv) in Proposition 3.3. Condition (iii)

in Proposition TA.3 for n = nf can be shown by noting that ‖φ(x̄, vt, ·)‖Θnf
< ∞ is implied by

(‖φ(x̄, vt, ·)‖Θnf
)nf <∞ . The result now follows since by the Cr-inequality in Loève (1977, p.157),

there exists a 0 < c <∞ such that

(‖φ(x̄, vt, ·)‖Θnf
)nf = E sup

θ∈Θ
|ω + αs(f̂1, yt;λ) + βf̂1|nf

≤ c · sup
θ∈Θ
|ω + βf̂1|nf + c · |α|nf E sup

θ∈Θ
|s(f̂1, yt;λ)|nf <∞,

where the last inequality follows from condition (iii) in Proposition 3.3.
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Proof of Proposition 3.5. Step 1, SE for derivatives of ft: The desired result follows by noting that

the vector derivative processes { ˆ̂f
(i)

t }t∈N for i = 1, 2 and initialized at f̂
(0:i)
1 satisfy the conditions

of Theorem 2.10 in Straumann and Mikosch (2006) for perturbed stochastic recurrence equations,

under the supremum norm ‖ · ‖Θ = supθ∈Θ | · | . In particular, they consider a recurrence of the

from xt+1 = φt(xt) where {φt} converges to an SE sequence {φ̃t} that satisfies the conditions of

Bougerol’s theorem E log+ supθ∈Θ |φ̃t(0)| < ∞, E log supθ∈Θ supx |φ̃′t(x)| < ∞. In particular, one

must have a logarithmic moment E log+ supθ∈Θ |x̃t| for the solution {x̃t} of the unperturbed SE

system, and the perturbed recurrence must satisfy

sup
θ∈Θ
|φt(x̄)− φ̃t(x̄)| e.a.s.→ 0 , for some x̄ ∈ R and sup

θ∈Θ
sup
x
|φ′t(x)− φ̃′t(x)| e.a.s.→ 0 as t→∞.

Here we state the convergence of φt at some point x̄ rather than at the origin φt(0) as in Straumann

and Mikosch (2006) since our recursion (depending on the application) may not be well defined

at x̄ = 0. As explained before, the perturbed sequence { ˆ̂f
(i)

t }t∈N depends on the non-stationary

sequences {f̂t}t∈N and { ˆ̂f
(1:i−1)

t }t∈N , which are only stationary in the limit. The unperturbed

initialized recurrence {f̂ (i)
t }t∈N is equal in all respects, except that it instead depends on the limit

SE filter {f ((0:i−1))
t }t∈Z . The unperturbed limit process is denoted by {f (i)

t }t∈Z .

In Appendix D.2 we show that the dynamic equations generating each element of the partial

derivative processes take the form

ˆ̂f
(i)

t+1 = A
(i)
t (θ, f̂

(0:i−1)
1 ) + ˆ̂f

(i)

t Bt(θ, f̂1), (A.1)

with Bt(θ, f̂1) = β + α∂s(f̂t(θ, f̂1), yt;λ)/∂f not depending on the order of the derivative i. The

expressions forA
(i)
t (θ, f̂1) are presented in Appendix D.2 and only depend on derivatives up to order

ˆ̂f
(i−1)

t . Note that A
(i)
t and Bt are written explicitly as a function of f̂

(0:i−1)
1 and f̂1 respectively,

since they depend on the non-stationary filtered sequences {f̂t} and { ˆ̂f
(1:i−1)

t } initialized at f̂1 and

f̂
(0:i−1)
1 respectively. In contrast, we let A

(i)
t (θ) and Bt(θ) denote the stationary counterparts of

A
(i)
t (θ, f̂

(0:i−1)
1 ) and Bt(θ, f̂1), respectively, that depend on the limit stationary filter ft(θ). The

recurrence convergence supθ∈Θ |φt(x̄)− φ̃t(x̄)| e.a.s.→ 0 in Straumann and Mikosch (2006) corresponds

here to having supθ∈Θ |A(i)
t (θ, f̂

(0:i−1)
1 )−A(i)

t (θ)| e.a.s.→ 0 and supθ∈Θ |Bt(θ, f̂1)−Bt(θ)| e.a.s.→ 0. Both

conditions are easily verified. We start by looking at the first derivative. Indeed, the expressions

in Appendix D.2 show that A
(1)
t (θ, f̂

(0:i−1)
1 ) satisfies

sup
θ∈Θ
|A(1)

j,t (θ, f̂1)−A(1)
j,t (θ)| ≤ sup

f
sup
θ∈Θ
|∂A(1)

j,t (θ)/∂f | · sup
θ∈Θ
|f̂t − ft|

for each j and hence we obtain supθ∈Θ |A(1)
j,t (θ, f̂1) − A(1)

j,t (θ)| e.a.s.→ 0 by Lemma 2.1 in Strau-

mann and Mikosch (2006) since supf supθ∈Θ |∂A(1)
j,t (θ)/∂f | is SE with a logarithmic moment since

min{n̄fs , n̄λfs } > 0 and because supθ∈Θ |f̂t − ft|
e.a.s.→ 0 by Proposition 3.3. Similarly, we obtain

sup
θ∈Θ
|Bt(θ, f̂1)−Bt(θ)| ≤ sup

f
sup
θ∈Θ
|∂Bt(θ)/∂f | · sup

θ∈Θ
|f̂t − ft| e.a.s.→ 0 as t→∞,
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since n̄ffs > 0 implies that supf supθ∈Θ |∂Bt(θ)/∂f | is SE with with a logarithmic moment, and

supθ∈Θ |f̂t − ft| vanishes e.a.s. The convergence of the Lipschitz coefficients supθ∈Θ supx |φ′t(x) −
φ̃′t(x)| = |Bt(θ, f̂1)−Bt(θ)| e.a.s.→ 0 follows immediately.

For the second derivative process, the same argument using Lemma 2.1 in Straumann and

Mikosch (2006) applies sequentially. As the argument is slightly more subtle, we prove it in

Lemma TA.17 of the Technical Appendix.

Finally, we note that the unperturbed recursions satisfy the conditions of Bougerol’s theorem,

which is implied by the verification of conditions (iii)-(iv) of Proposition TA.3 for the unperturbed

system in the next step of the proof. The logarithmic moment of the SE limit process that we

need also follows directly from the verification of these conditions, because it implies the existence

of a moment of some positive order under the current conditions. In the notation of Straumann

and Mikosch (2006), this means that the limit recursion φ̃t is SE and that its solution {x̃t}t∈Z
has a logarithmic moment uniformly over the parameter space. Thus, after we proved that these

conditions hold, the e.a.s. convergence of the initialized perturbed sequence to an SE limit sequence

uniformly over the parameter space follows from Theorem 2.10 in Straumann and Mikosch (2006).

Step 2, moment bounds for derivatives of ft: To establish the existence of moments for the

derivative processes, we need to verify that conditions (iii)–(iv) of Proposition TA.3 hold. For the

limit derivative processes, we can apply Proposition TA.3 directly to the unperturbed system.

Inspection of the formula for A
(1)
j,t (θ) reveals that A

(1)
j,t (θ) has nfθ = min{nf , ns , nλs} bounded

moments and A
(2)
j,t (θ) has nfθθ moments as defined in Proposition 3.5, which follows from Hölder’s

inequality. Inspection of the expression for Bt(θ) and condition (iv) of Proposition 3.3 reveals that

Bt(θ) has nf moments.

Thus, under the conditions of Proposition 3.5, condition (iii) in Proposition TA.3 holds with

nfθ moments for the first derivative process and nfθθ moments for the second derivative process,

since for any n > 0, by the Cr-inequality in Loève (1977, p.157), there exists a 0 < c < ∞ such

that,

E sup
θ∈Θ
|φ(x̄, vt,θ)|n = E sup

θ∈Θ
|A(i)

j,t(θ) + f̄
(i)
j Bt(θ)|n

≤ c · E sup
θ∈Θ
|A(i)

j,t(θ)|n + c · |f̄ (i)
j |nE sup

θ∈Θ
|Bt(θ)|n <∞,

for each j and where for example A
(i)
j,t(θ) denotes the j-th element of the vector or matrix A

(i)
t (θ).

Condition (iv) in Proposition TA.3 holds for i = 1, 2, since for any pair (f
(i)
j , f

(i)′
j ) ∈ F ×F : f

(i)
j 6=
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f
(i)′
j :

sup
θ∈Θ

∣∣∣φ(f
(i)
j , vt,θ)− φ(f

(i)′
j , vt,θ)

∣∣∣∣∣∣f (i)
j − f

(i)′
j

∣∣∣ = sup
θ∈Θ

∣∣∣Bt(θ)(f
(i)
j − f

(i)′
j )

∣∣∣∣∣∣f (i)
j − f

(i)′
j

∣∣∣
= sup

θ∈Θ

∣∣∣∣β + α
s(ft, yt;λ)

∂f

∣∣∣∣
≤ sup

(f∗,y,θ)∈F×Y×Θ

∣∣∣∣ β + α
∂s(f∗, y;λ)

∂f

∣∣∣∣ < 1 ,

for every j and where vt = (f
(0:i−1)
t , yt). The first equality holds because we are working with the

unperturbed sequence and the final inequality holds because of condition (iv) of Proposition 3.3.

We thus obtain, by Proposition TA.3, nfθ (nfθθ) moments for the first (second) derivative limit

process.

Proof of Theorem 4.3. The result follows immediately from the differentiability of p̄, ḡ, ḡ′, the

compactness of Θ, and the Weierstrass theorem. For a detailed proof, see Technical Appendix

B.

Proof of Theorem 4.6. Following the classical consistency argument found in for instance White

(1994, Theorem 3.4) or Gallant and White (1988, Theorem 3.3), we obtain θ̂T (f̂1)
a.s.→ θ0 from

the uniform convergence of the criterion function and the identifiable uniqueness of the maximizer

θ0 ∈ Θ,

sup
θ:‖θ−θ0‖>ε

`∞(θ) < `∞(θ0) ∀ ε > 0.

Step 1, uniform convergence: Let `T (θ) denote the likelihood `T (θ, f̂1) with f̂t replaced by ft.

Also define `∞(θ) = E˜̀
t(θ) ∀ θ ∈ Θ, with ˜̀

t denoting the contribution of the t-th observation to

the likelihood function `T . We have

supθ∈Θ |`T (θ, f̂1)− `∞(θ)| ≤
supθ∈Θ |`T (θ, f̂1)− `T (θ)|+ supθ∈Θ |`T (θ)− `∞(θ)|. (A.2)

The first term vanishes by application of Lemma 2.1 in Straumann and Mikosch (2006) since f̂t

converges e.a.s. to ft and supθ∈Θ supf |∇`T (θ)| has a logarithmic moment because n̄∇ > 0. The

second term vanishes by Rao (1962); see Lemmas TA.5 and TA.6 form Technical Appendix B,

respectively.

Step 2, uniqueness: Identifiable uniqueness of θ0 ∈ Θ follows from, for example, White (1994),

by the assumed uniqueness, the compactness of Θ, and the continuity of the limit E˜̀
t(θ) in θ ∈ Θ,

which is implied by the continuity of `T in θ ∈ Θ ∀ T ∈ N and the uniform convergence of the

objective function proved earlier.
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Proof of Theorem 4.10. We index the true {ft} and the observed random sequence {yt} by the

parameter θ0, e.g. {yt(θ0)}, since under correct specification the observed data is a subset of the

realized path of a stochastic process {yt}t∈Z generated by a score-driven model under θ0 ∈ Θ. As

conditions (i) and (ii) of Proposition 3.1 hold immediately by Assumption 4.9 and condition (v)

follows immediately from the i.i.d. exogenous nature of the sequence {ut}, it follows by Proposi-

tion 3.1 that the true sequence {ft(θ0)} is SE and has at least nf moments for any θ ∈ Θ. The SE

nature and nf moments of {ft(θ0)} together with part (iii) of Assumption 4.8 imply, in turn, that

{yt(θ0)} is SE with ny = ng moments.

Step 1 (formulation and existence of the limit criterion Q∞(θ)): As shown in the proof of

Theorem 4.6, the limit criterion function Q∞(θ) is well-defined for every θ ∈ Θ by

Q∞(θ) = E˜̀
t(θ) = E log pyt|yt−1,yt−2,...

(
yt(θ0)

∣∣∣yt−1(θ0), yt−2(θ0), . . . ;θ
)
.

As a normalization, we subtract the constant Q∞(θ0) from Q∞(θ) and focus on showing that

Q∞(θ)−Q∞(θ0) < 0 ∀ (θ0,θ) ∈ Θ×Θ : θ 6= θ0.

To do this, we use Lemma TA.7 from Technical Appendix B and rewrite

Q∞(θ)−Q∞(θ0) =∫ ∫ [∫
py(y|f, λ0) log

py(y|f̃ ;λ)

py(y|f ;λ0)
dy

]
pft,f̃t(f, f̃ ;θ0,θ) df df̃, (A.3)

for all (θ0,θ) ∈ Θ×Θ : θ 6= θ0, where pft,f̃t(f, f̃ ;θ0,θ) is the bivariate pdf for the pair (ft(θ0), f̃t(θ)).

We note that the pdf pft,f̃t(f, f̃ ;θ0,θ) depends on both θ0 and θ, as for instance the recursion defin-

ing f̃t(θ) depends on both θ and on yt(θ0), which in turn depends on θ0. Next, we use Gibb’s

inequality to show that this quantity is negative for θ 6= θ0.

Step 2 (use of Gibb’s inequality): Gibb’s inequality ensures that, for any given (f, f̃, λ0, λ) ∈
F × F̃ × Λ× Λ, the inner integral in (A.3) satisfies∫

py(y|f, λ0) log
py(y|f̃ ;λ)

py(y|f ;λ0)
dy ≤ 0,

with equality holding if and only if py(y|f̃ ;λ) = py(y|f ;λ0) almost everywhere in Y with respect

to py(y|f, λ0). By Lemma TA.8 from Technical Appendix B there exists a set YFF̃ ⊆ Y × F × F̃
with positive probability mass and with orthogonal projections YF̃ ⊆ Y ×F , FF̃ ⊆ F ×F̃ , etc., for

which (i)–(ii) hold if λ 6= λ0, and for which (i)–(iii) hold if λ = λ0, where

(i) py(y|f, λ0) > 0 ∀ (y, f) ∈ YF ;

(ii) if (f̃, λ) 6= (f, λ0), then py(y|f̃ ;λ) 6= py(y|f ;λ0) ∀ (y, f, f̃) ∈ YFF̃ ;

(iii) if λ = λ0 and (ω, α, β) 6= (ω0, α0, β0), then f 6= f̃ for every (f, f̃) ∈ FF̃ .
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Hence, if λ 6= λ0, the strict Gibb’s inequality follows directly from (i) and (ii) and the inner integral

and the fact that YFF̃ has positive probability mass. If λ = λ0, property (iii) ensures f 6= f̃ on a

subset FF̃ with positive probability mass, and hence the strict inequality again follows via (ii) and

(i).

Proof of Corollary 4.11. The desired result is obtained by showing (i) that under the maintained

assumptions, {yt}t∈Z ≡ {yt(θ0)}t∈Z is an SE sequence satisfying E|yt(θ0)|ny <∞; (ii) that θ0 ∈ Θ

is the unique maximizer of `∞(θ, f̂1) on Θ; and then (iii) appealing to Theorem 4.6. The fact that

{yt(θ0)}t∈Z is an SE sequence is obtained by applying Proposition 3.1 under Assumptions 4.8 and

4.9 to ensure that {f̂t(θ0)}t∈N converges e.a.s. to an SE limit {ft(θ0)}t∈Z satisfying E|ft(θ0)|nfu <

∞. This implies by continuity of g on F ×U (implied by ḡ ∈ C(2,0)(F̄ ×Y) in Assumption 4.2) that

{yt(θ0)}t∈Z is SE. Furthermore, Assumption 4.8 implies that E|yt(θ0)|ny <∞ for ny = ng. Finally,

the uniqueness of θ0 is obtained by applying Theorem 4.10 under Assumptions 4.8 and 4.9.

Proof of Theorem 4.15. Following the classical proof of asymptotic normality found e.g. in White

(1994, Theorem 6.2), we obtain the desired result from:

(i) the strong consistency of θ̂T
a.s.→ θ0 ∈ int(Θ);

(ii) the a.s. twice continuous differentiability of `T (θ, f̂1) in θ ∈ Θ;

(iii) the asymptotic normality of the score

√
T`′T

(
θ0, f̂

(0:1)
1 )

d→ N(0,J (θ0)
)
, J (θ0) = lim

T→∞
T−1E

( T∑
t=1

˜̀′
t(θ0)

)( T∑
t=1

˜̀′
t(θ0)>

)
; (A.4)

(iv) the uniform convergence of the likelihood’s second derivative,

sup
θ∈Θ

∥∥`′′T (θ, f̂
(0:2)
1 )− `′′∞(θ)

∥∥ a.s.→ 0; (A.5)

(v) the non-singularity of the limit `′′∞(θ0) = E˜̀′′
t (θ0) = I(θ0), which holds by assumption.

Step 1 (consistency and differentiability): Consistency to an internal point of Θ follows imme-

diately by Theorem 4.6 and the additional assumption that θ0 ∈ int(Θ). The differentiability of

the likelihood function follows directly by Assumption 4.2 and the expressions for the likelihood in

Technical Appendix D.

Step 2, CLT: The asymptotic normality of the score `′T
(
θ0, f̂

(0:1)
1 ) in (A.4) follows by applying

a CLT to `′T
(
θ0),

√
T`′T

(
θ0)

d→ N(0,J (θ0)
)
, J (θ0) = lim

T→∞
T−1E

( T∑
t=1

˜̀′
t(θ0)

)( T∑
t=1

˜̀′
t(θ0)>

)
<∞, (A.6)
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and by showing that the effect of initial conditions vanishes, i.e.,

√
T‖`′T

(
θ0, f̂

(0:1)
1 )− `′T

(
θ0)‖ a.s.→ 0 as T →∞. (A.7)

and by appealing to Theorem 18.10[iv] in van der Vaart (2000). We note that the CLT for SE

martingale difference sequences (mds) in Billingsley (1961) cannot be used to obtain (A.6) as we

allow for model misspecification, and hence the mds property need not hold. Instead, we obtain

(A.6) by applying the CLT for SE NED sequences in Davidson (1992, 1993) (see also Davidson,

1994; Pötscher and Prucha, 1997). Lemma TA.11 in Technical Appendix F ensures that the score

`′T
(
θ0) is a sample average of a sequence that is SE and NED of size −1 on a strongly mixing

sequence. In addition, the existence of J (θ0) follows from Lemma TA.9 and the assumption that

n`′ > 2 in Assumption 4.12. Finally, the a.s. convergence in (A.7) follows directly by Lemma TA.12

in Technical Appendix F.

Step 3, uniform convergence of `′′: The proof of the uniform convergence in (iv) is similar to

that of Theorem 4.6. We have

sup
θ∈Θ
‖`′′T (θ, f̂

(0:2)
1 )− `′′∞(θ)‖ ≤ sup

θ∈Θ
‖`′′T (θ, f̂

(0:2)
1 )− `′′T (θ)‖+ sup

θ∈Θ
‖`′′T (θ)− `′′∞(θ)‖. (A.8)

The first term on the right-hand side of (A.8) vanishes a.s. which can be shown by considering

the separate terms in the expression of `′′T ; see Lemma TA.13 in Technical Appendix F.

For the second term in (A.8) we use the same approach as Lemma TA.6, meaning that we apply

the ergodic theorem for separable Banach spaces of Rao (1962) to {˜̀t(·)}. So the term converges if

{`′′T }t∈Z is and SE and E supθ∈Θ ‖˜̀′′t (θ)‖ <∞. The former is implied by continuity of `′′ on the SE

sequence {(yt,f (0:2)
t (·))}t∈Z and Proposition 4.3 in Krengel (1985), where {(yt,f (0:2)

t (·))}t∈Z is SE

by Proposition 3.3 under the maintained assumptions. The moment bound E supθ∈Θ ‖˜̀′′t (θ)‖ <∞
follows from n`′′ ≥ 1 in Assumption 4.12 and Lemma TA.10 in Technical Appendix F.

Proof of Theorem 4.16. The desired result is obtained by applying Corollary 4.11 to guarantee that

under the maintained assumptions {yt}t∈Z ≡ {yt(θ0)}t∈Z is an SE sequence satisfying E|yt(θ0)|ny <

∞ for ny ≥ 0, and that θ0 ∈ Θ is the unique maximizer of `∞(θ, f̂1) on Θ. Then the statement

follows along the same lines as the proof of Theorem 4.15. Note that the non-singularity of the

limit `′′∞(θ0) = E˜̀′′
t (θ0) = I(θ0) is implied by Theorem 1 in Rothenberg (1971), because the model

is correctly specificied, θ0 is the unique maximizer of `∞(θ) in Θ and the assumption that E˜̀′′
t (θ0)

is regular in the sense of Rothenberg (1971).
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